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SUMMARY

Work under the present contract has been dedicated to acquiring a detailed
understanding of the fundamental mechanisms governing the dynamics of Josephson
junction devices, with a view to employing this knowledge in the design of practical
Josephson devices. Particular attention has been given to the questions of the inter-
play between coherence and chaos, and to determining the limits of stability of
coherent states. A combination of analytical, computational, and experimental meth-

ods has been employed in order to maximize the results obtained.
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INTRODUCTION

The work performed under this contract has been described in six technical
reports:

Ist Periodic Report January 1986
2nd Periodic Report May 1986
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Sth Periodic Report November 1987
6th Periodic Report May 1988
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BACKGROUND

The strong potential of Josephson tunnel junction devices in high-perfor-
mance electronic applications has been recognized for a number of years. In a few
areas, notably those involving applications of dc SQUIDs, this potential has been
amply realized: measurements of extremely weak magnetic fields, with sensitivities
approaching the fundamental quantum limit, have now become routine using these
devices. Another area where Josephson devices show considerable promise is the
realization of circuit elements — oscillators, mixers, amplifiers ~ for high-sensitivi-
ty. low-noise microwave or millimeter-wave receivers. Notable practical progress has
also been achieved in this area: Josephson SIS mixers have been installed and func-
tion routinely in the high-sensitivity receivers employed in several radio-astronomi-
cal observatories throughout the world. However, in this area, we are still fairly far

from realizing the full potential of the Josephson approach.
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Our w-~'. under the present contract, as well as that performed in the con-
text of ou. previous ERO contract (no. DAJA37-82-C-0057, 1982-198S), has been de-
dicated to acquiring a detailed understanding of the fundamental mechanisms go-
verning the dynamics of Josephson junction devices, with a view to employing this
knowledge in the design of practical Josephson devices. Work under the first con-
tract was devoted to understanding the basic mechanisms of fluxon (fluv quantum,
or soliton) propagation in Josephson junctions. The practical consequence of this
work, very briefly summarized, was that we were able to construct a “catalog” of
the basic fluxon dynamic configurations responsible for various, experimentally
observed phenomena. Under the present contract we have extended this study to
the understanding of the more subtle question of the complicated interaction bet-
ween coherence (i.e. regular, steady fluxon propagation) and chaos. Chaos in dy-
namical systems has, in recent years, become an active field of independent study.
with an impressive array of theoretical and computational results. From the practi-
cal point of view, on the other had, in particular for electronic applications, chaos
represents "noise”, and hence is a phenomenon that one wishes to‘ avoid. Conse-
quently, in this context, one studies chaos with the objective of "designing around
it". A second, closely related, question is the analysis of the stability of coherent
states. Often (but not always) a loss of stability signals the onset of chaos. But
even when a stability boundary indicates a transition from one coherent state to
another, understanding of this fact constitutes essential knowledge for the device
designer.

The most significant results that we have obtained under the present con-
tract are summarized briefly in the following section; they are described in more
detail in the papers enclosed as appendices. As in the work under the previous con-
tract, we have herein attempted to combine analytical, computational, and experi-
mental work in such a way as to maximize the illumination cast on any given ques-

tion.

SUMMARY OF MOST IMPORTANT RESULTS

The influence of small external perturbations, both periodic and random, on
the coherent motion of fluxons in Josephson junctions, and hence on the linewidth
of the microwave radiation emitted by such junctions, was studied in Refs. ! and 4.
The work in Ref. | was based essentially on numerical simulations of the sine-Gor-
don model of the Josephson junction, subjected to small external perturbations:
that in Ref. 4 was analytical work based on the soliton perturbation theory of
McLaughlin and Scott. The question is of considerable practical interest: experi-
ments nave shown that the relative linewidth of the radiation emitted from a Jo-
sephson junction oscillator. associated with resonant fluxon propagation. can be as
narrow as 107, it is just this fact that renders the device interesting for elec-

tronic applications.




.2 ___________________________ _____________

Knowledge of the intrinsic, ie., “classical”, stability of coherent fluxon dy-
namical states is clearly of fundamental importance for the device designer. This ¢
question was addressed in Refs. 5, 6, 10, 15, and 17. Refs. S, 6, and 10 were directed
toward the question of the "birth” of coherent fluxon states, which give rise to ze-
ro-field steps in the current-voltage characteristic of the junction, from the uniform
background state (the so-called McCumber state). The basic analytical procedure, in
approximate form, was developed in Ref. 5. Comparison with numerical and experi-
mental results demonstrated the essential correctness of the procedure. Ref. 10
extended the analytical procedure, giving an exact linear stability analysis of the
McCumber state. Refs. 15 and 17 were dedicated to the "death” of coherent fluxon
states by means of switching from the top of zero-field steps to the so-called gap
state. Here, since the analysis is (at least so far) intractable, the approach was
strictly numerical. In Ref. 15 a direct numerical integration of the model equation
was used. In Ref. 17, instead, numerical techniques were used to establish the exis-

tence (and non-existence) of heteroclinic connections between the fixed points of

the reduced ordinary differential equation associated with the model partial differen-
tial equation.

At the present time. the Melnikov-function technique is perhaps the best-de-
veloped and most reliable theoretical tool for studying the onset of chaos in dyna-
mical systems. In particular, this technique permits analytic calculation of the con-
ditions for the existence of Smale-horseshoe chaos in perturbed dynamical systems
that are “sufficiently close”, in a function-space sense, to an integrable system. A
Smale horseshoe contains a countable set of unstable periodic orbits, an uncount-
able set of bounded nonperiodic orbits, and a dense orbit; consequently, the exis-
tence of a Smale 'orseshoe can be viewed as the first step toward a possible
chaotic behavior. The Melnikov-function technique was applied to Josephson junction
devices, and related dynamical systems, in Refs. 3, 7, and {{. Direct numerical integra-
tion of the model equation was used to check the validity of the predictions of the
Melnikov approach regarding the threshhold for the onset of chaos.

A topic that continues to attract research interest, even though not directly
connected with the interplay between coherence and chaos, is the influence of the
dissipative parameters in the sine-Gordon model of the Josephson junction on the
dynamics of fluxons. Refs. 8, 9, and 14 have provided interesting new results in this
connection. Ref. 14, in particular, has extended the usual "isolated” sine-Gordon mo-
del of the junction to a model in thermal equilibrium with a heat reservoir, thus
incorporating in a natural way the effects of thermal fluctuations on the behavior
of the system. Thermal noise is an important physical phenomenon, even at the very
low temperatures at which superconductive Josephson devices work; consequently,
an understanding of thermal effects is crucial for the accurate modelling of practi-
cal electronic devices.

As indicated above. Josephson fluxon oscillators show considerable promise

for applications in high-frequency radio receivers. Since the power available from a
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single such oscillator is somewhat low, a natural approach has been to construct
arrays of oscillators, which, of course, is reasonable if the individual oscillators of
the array can be made to work in synchronism. In Ref. 19, a first step has been
taken toward the theoretical study of phase-locking of fluxen oscillators. The
approach adopted has the attractive feature of reducing the problem of phase-lock-
ing to the study of the fixed points of a two-dimensional functional map.

Finally, new computational techniques for the study of particular aspects of
Josephson junction dynamics have been developed in Refs. 16 and 20. Ref. 16 illus-
trates the application of the cell-to-cell mapping technique, originally developed for
the study of other dynamical systems, to the rf-driven Josephson junction. This ap-
proach permits a complete mapping of the basins of attraction of the various attract-
ors, both periodic and chaotic, of the system with an enormously reduced computa-
tional cost. In Ref. 20, study of the complicated dynamics of the sine~Gordon model,
in a regime characterized by chaotic behavior, is reduced to the study of a finite set
of modal equations, with the nonlinear modes chosen from considerations of spec-

tral theory, resulting once again in a significant reduction of computational effort.
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Simulation studies of radiation linewidth in circular Josephson-junction fluxon oscillators

F. If, P. L. Christiansen, R. D. Parmentier,* O. Skovgaard, and M. P. Soerensen
Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 8§ November 1984)

Detailed simulation studies of the dynamics of fluxons in long circular Josephson tunne! junctions
under the influence of external microwave radiation and internal thermal noise are presented. The
simulation algorithm uses a pseudospectral method well adapted to vector processors (CRAY-1-S),
which gives a speed-up factor in computing time of typically 22 in comparison to conventional
high-speed computers, and also provides results with a relative accuracy of less than 10-* thereby
making possible the study of the very narrow radiation linewidth of such oscillators. Comparison of
calculated linewidths with experimental results shows good agreement.

L. INTRODUCTION

Josephson-junction fluxon oscillators continue to attract
research interest both theoretically, in studies of nonlinear
wave dynamics, and experimentally, where the very nar-
row linewidth of the emitted microwave radiation prom-
1ses potentially interesting applications.” This very nar-
row linewidth makes the numerical study of the detailed
dynamics of such oscillators very CPU time consuming.
In order to overcome these difficulties we have developed
a pscudospectral algorithm for solving the perturbed
sinc-Gordon equation which describes the oscillator. This
algorithm employs a Fourier transformation of the spatial
variable together with a finite-difference approximation to
the time variable. The extensive use of fast Fourier
transforms in the algorithm has made the implementation
natural on a CRAY-1-S vector processor. The Fourier
treatment of the space variable requires spatial periodicity
in the model. In physical terms this means that we are
studying a circular junction oscillator of the type first
proposed by McLaughlin and Scott.? This device, as well
as providing a convenient mathematical model because of
penodic boundary conditions, has in recent years begun to
attract research interest in its own right.*

The paper is structured as follows. In Sec. II we
describe the mathematical model of the circular junction.
Details of the numerical techniques employed are present-
ed in Sec. lI1. In Sec. VI we study the behavior of the os-
ctllator under the influence of a sinusoidal driving term in
the bias current, which models external microwave irradi-
ation. Section V conlains calculations of the linewidth
under the influence of Gaussian white noise, which
models internal thermal noise in the junction. In Sec. V1
we compare our results with existing experimental obser-
vations. In all of the sections we arc focusing on a config-
uration with a single propagating fluxon, which corre-
sponds to the first zero-field step in the current-voltage
characteristic of the oscillator.

Il. MATHEMATICAL MODEL

As a model for the Josephson tunnel junction of overiap
gecometry we use the perturbed sine-Gordon cqua!ion.’

2

Pux — Py —SiN@=a@, +¥ +7(x,1) . (2.1)
Here ¢ is the quantum phase difference between the two
superconducting layers in the junction. Space and time
are normalized to the Josephson penetration length
k,=(¢0/27rjoL,)"z, and the inverse of the plasma fre-
quency w,=(21rjo/¢0C)m, respectively, where @, is the
magnetic flux quantum given by ®py=h/2e =2.064
X10™" Wb. L, and C are the inductance and the capa-
citance per unit length of the junction. The first of the
perturbation terms on the right-hand side of Eq. (2.1)
represents the loss due to tunneling of normal electrons, in
normalized units a=G /w,C, where G~ is an effective
normal resistance per unit length, The second term is the
normalized bias current ¥ measured in units of j, the
maximum Josephson current per unit length. In this pa-
per we include a third term 7(x,) representing either an
externally applied sinusoidal driving term connected to
the bias, or an internal thermal noise term connected to
the loss. In this second case we assume a distributed
Gaussian white noise with zero mean value.

The normalized length of the Josephson junction
I=L/X\; is assumed to be large compared with unity and
the normalized width w= W /A, small compared with un-
ity, allowing us to use a 1+1 dimensional model.® Be-
cause the aim of this investigation is to isolate the influ-
ence of the term 7(x,t) on the solution to Eq. (2.1) we
avoid phenomena connected with collision with junction
boundaries by considering a long annular junction. There-
fore, we demand spatial periodicity with period / in the
two physical quantities, the voltage drop across the junc-
tion:

V= ¢;:, @ (2.2)
and the current along the junction,
= —jok;Px (2.3
i.e., boundary conditions
@0, =g,l1,1), (2.4l
@:(0,0)=@,(1,1) . (2.4b)
1512 ©1983 The American Physical Society
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n SIMULATION STUDIES OF RADIATION LINEWIDTHIN. .. 1513

The fluxon traveling wave solution to the unperturbed
version of Eq. (2.1) is given by’

e=2sin""[en(&,k)], (2.5)

with E=(x —ut)/[k(1~u?)'"?). Here u is the velocity of
the wave and k is the modulus in the Jacobian elliptic
function.®  Spatial periodicity requires [/(1—u?)!/?
=2nkK!(k), where n is the winding number, i.e., the num-
ber of fluxons minus the number of antifluxons, and K(k)
is the complete elliptic integral of the first kind. In Ref. 9
it 1s shown by Hamiltonian perturbation theory? that the
steady-state fluxon velocity dependence on the loss and
bias parameters is

u=1/1+4a'/7y)H'/?, (2.6)

with a’=aFE(k)/k, where E(k) is the complete elliptic
integral of the second kind. For />8 (assuming n=1)
Eq. (2.5) reduces to the kink for the infinite line
g=4tan""e?) with &=(x—ut)/(1—u?)'2? and the
velocity given by u =1/[1+(4a/my)!)'’L. In the numeri-
cal simulations we have used /=8, 12.8, 20, and n=1.

111. NUMERICAL TECHNIQUES

The very narrow linewidth of the radiation emitted
from a Josephson-junction oscillator (less than | kHz at
10 GHz)'0 suggests that a relative numerical accuracy of
at least 10”7 is essential. We solve Eq. (2.1) numerically
by using a pseudospectral method.!! This method, a
Fourier transform treatment in space together with a leap-
frog scheme in time, has the advantage of simplicity and
high-order accuracy in the approximations to the space
derivatives. Expansion of the fluxon wave into truncated
«ertes of sines and cosines demands periodicity not only in
¢, und @, but also in @ itself. Observing that the fluxon
15 a localized kink connecting two ground states separated
hy 27 we introduce a new periodic function @—2mx /I
whose Fourier representation we denote $”(1) with the su-
perscript p=0,%1, ..., 2P

Transforming Eq. (2.1) into the following set of ordi-
nary nonlinear coupled differential equations:

- k;<b’(r)*¢>ﬁ(l)—F’[sin¢l

=a®(1)+1yB,o+N?(1), (3.1a)

ky=2mp/l, p=0,%1,..., £pmu (3.1b)

in which F? and N? are the Fourier components of sing
and 7. respectively, and §,, denotes the Kronecker sym-
hol, and using second-order central differences to approxi-

mate the time derivatives we get an explicit scheme for

the time evolution of the Fourier components

L =[20)—(1—aat/Dd)_,

—AtUS 41y + N /(1 +adt/2) (3.2a)
@ =12 -AkHY — (1 —aat /D),
- AUSP+ND) /(1 +adt/2), |p] >0, (3.2b)

where Sf equals F?[sing] at time jAt, calculated each
time step by transforming &7 ., back to x space, calculat-

Caiculate initial
conditions

| Make solution
periodic
Calculote Transform solution

nonlinear term to k-spoce vig FFT

Make s.olu'tion Add sinusoidol
aperiodic or noise drive

Transform solution
to x—space vig FFT

i

Advance solution
one timestep

FIG. 1.
cedure.

Schematic diagram of numerical simulation pro-

ing sing and then transforming again to k space as indi-
cated schematically in Fig. 1.

Figure 2 shows the computed @, as a function of time
at an arbitrary point on the junction. This signal consists
of an almost-periodic sequence of pulses. In fact, it is the
deviation from perfect periodicity that gives a nonzero
linewidth of the radiation. Since the deviation is small it
is necessary to devise a very accurate method for deter-
mining the revolution periods T, for the circulating flux-
on. We do this by calculating T, as the time for the
mean value of the phase over x to change by 27. The
fundamental frequency of the signal then becomes
fo=1/{T,), where brackets denote an average value.
We take the power spectrum of the signal near f; to be
the distribution of the computed values of 1/7,.

Figure 3 shows the calculated T,’s in a computer ex-
periment with the driving term =0 in Eq. (2.1). Ascan
be seen from Fig. 3, the relative accuracy
AT/{T,)<10~% In fact, examination of the numerical
output shows that it is approximately 7X 10~°. The long
transient arises from the fact that the initial conditions
given by

(3.3a)
(3.3b)

@(x,00=f(x,0)—sin"'(y),
@lx, —At)=flx,~At)=sin"'(y),

where f(x,¢) is the fluxon traveling wave solution to the
unperturbed sine-Gordon equation as given by Eq. (2.5)

" — T—
> 4 4 n
3_
Q
.2
§*
5 14
©
®
0
té ]
(2 T v T T —
480 500 520 t540

FIG. 2. Time dependence of the space derivative of the flux-
on wave form, showing the ath period of revolution 7, for
a=0.01,y=0.02, n=0, and I =12.8.
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Revolution period T,

9.482515 3
9.482510 A
T
9.482505
9.482500 r————————T———

T
120 140 160 180 200 220
Revolution number n

FIG. 3. Revolution period T, as a function of revolution
number n for a=0.0!, y=0.02, n=0, and | =8 showing high
level of computational accuracy achieved.

and sin~'(y) is the ground state, are not exactly equal to
the final propagating configuration.

We note at this point that the accuracy of the results
was checked by doubling pn,, in Eq. (3.1b), in order to
ensure that no spurious Fourier modes due to the discreti-
zation in x space are produced, and halving At in Eqs.
{3.2). The values used for py,, ranged from 64 to 256 and
those for At from 0.075 to 0.0025, depending on the pa-
rameters [ and y.

The computer program was implemented on an IBM
3033 in double precision (approximately 16 significant
digits) and on a CRAY-1 vector processor in single pre-
cision (approximately 15 significant digits) using optimiz-
ing FORTRAN compilers. In the former case we have used
the IMSL-routine FFT2C for fast Fourier transform.'? In
the latter case, by making full use of vectorization of the
computer code and the CRAY routines for Fourier
transform and vector copying CFFT2 (Ref. 13) and
CCOPY (Ref. 14) we gained a speed-up factor in comput-
ing time of 22. Each long simulation requires typically
5% 10° time steps on a S12-point spatial lattice and uses
approximately 10 min of CPU time on the CRAY-1-S as
opposed to approximately 4 h on a scalar machine.

Finally, we have compared the steady-state fluxon ve-
locity, given by u=1/(T,), with the predicted value

Yeaie ™ Upert
1077

v+—

’ T L
Q.0 0.1 0.2 0.3
Bios current ¥y

FIG. 4. Difference between average propagation velocity as
computed numericaily u.y and caiculated from perturbation
theory u .. from Eq. (2.6) as a function of the bias for a=0.01,
n=0and /=8

from Hamiltonian perturbation thecry, Eq. (2.6). The re-
sult is seen in Fig. 4. The deviation for large bias values is
expected because the perturbation theory is only valid for
small y values.

1V. SINUSOIDAL DRIVING TERM

In this section we investigate the behavior of the fluxon
velocity when the driving term is given by

n(x,t)=n(t)=nesin(1) , 4.1

as a function of the driving frequency ). This might be
considered as a model of microwave irradiation of the
junction. Using the definition of the normalized momen-
tum

1
plt)=—+% fo @ pdx (4.2)

and separating the phase into a kink part and a back-
ground part'® p(x,t)=@"(x,1)+@=(1), and assuming that
the length of the junction is large, allowing expressions for
the infinite junction to be used, we get the following equa-
tion for the momentum p" of the kink,

Revolution frequency f,

(a)
0115 444 N M “ ﬂ
0.110
0.105
0.100
0.095
0.090 F-—rr—r—p
0 25 50 75

Revolution number n

Revolution frequency  fa

(&)
1
0.10550
0.10545 ]
1
TR
0.10540
1
e
0 25 S0 75

Revolutidn number n

FIG. 5. Revolution frequency f, as a function of revolution
number n for sinusoidal drive, n(1)=nuin( i), with a =0 01,
y=0.02, 2=0.86, 9,=0.01, and /=8. (a) Numencal simula-
tion. (b) Kink model.
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-1
k © 1 - f,=tan"'(Q/a)
dp_ kT in(Qe) 4 g 922, de”
i +ap a Y +nosin{ Q) +a dr + 2’ . and (4.5b)

(4.3

Thus, the background motion becomes an effective
dnving term for the kink part. From Eq. (2.1) we derive
the linearized equation for § ® =@* +sin~'(y), assuming
that @ ® << 1,

In ®

d—d‘ﬁ,—m% +0=yHP o= _psin(Qr) . (4.4)
Combining Egs. (4.3) and (4.4) we obtain for the kink
momentum
pin="T]Ly T __gna—g,
4 la (a+0H'7
Mol
_”(]_YZ)I/I_QZ]Z_,{_aZQI]l/Z

cos({t —6,)

13

(4.5a)

Revolution frequency  f,

(o)

0.110

P |
e —

i

0105

£.100 1

0.095 —r—r
0 25 50 75

Revolution number n

A S AL A S B S S S A ae |

Revolution frequency  f,

(b)
01055 o
4
0.1054
;
01053 +— —

0 25 50 75
Revolution number n

FIG. 6. Revolution frequency f, as a function of revolution
number n for sinusoidal drive, n(1)=nesin({lt), with a=0.01,
7 =002, 1=0.89, 1,=0.01, and /=8. (a) Numerical simula-
tien. ‘bt Kink modet.

6,=tan"'{aQ/[(1-y})12 -]} .

The instantaneous kink velocity is then calculated from
pr=u/(1=u®)'2 In order to compare this approximate
theoretical description with the numerical result we calcu-
late the nth period T, according to the formula

e +7,

f'. udt=1,

with (4.6}
u =pk/[l+(pk)Z]l/2 .

Figures 5—7 show a comparison of the results from this
linearized model and from numerical simulations of Eq.
(2.1) with 0=0.86, 0.89, and 1.10, respectively. In all
cases it is seen that the kink model is able to reproduce
the fluctuations in the revolution frequency f, =1/T, in
great detail.

As a measure of the amplitude of the frequency fluc-

Revolution frequency  f,
] (a)

| I

0.1220

0.1215

aslsaas

/]
——..
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0.1205

S U
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al

0.1185

LERNS S S S s S BN U St S NN S B U

0 25 50 75
Revolution number n

Revolution frequency  f,

(o)
012114 -
0.12113 o v L J
0.12112
T T T "Tﬁ' T T T T T T T 1
0 25 30 75

Revolution number n

FIG. 7. Revolution frequency f, as a function of revolution

number n for sinusoidal drive, n(t)=ngsin({1r), with a=0.01,
y=0.05, 1=1.10, 10=0.01, and /=38,
tion. (b) Kink model.

(a) Numerical simula-
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Standard devistion g,

-s

O L4 LS l L I v I v l' v l' T I l']

040608101214161820
Driving frequency 0

FIG. 8. Standard deviation of revolution frequency o, as a
function of driving frequency Q2. Solid curve, numerical simula-
tion; dashed curve, kink model; parameters, =0.01, y =0.02,
10=0.01, and [/ =8.

tuation, which is essentially the linewidth of the oscillator,
we have calculated the standard deviation of the revolu-
tion frequency a,=({(f,—{f,)1*)]'/? for values of the
cyclic driving frequency (2 between 0.4 and 2.0.

The full curve in Fig. 8 shows the results from the nu-
merical simulation and the dashed curve those from the
kink model. The kink model predicts a resonance just
below the plasma frequency 0 =1, whereas the numerical
simulation yields this peak at a somewhat lower frequen-
cy. Moreover, the numerical results exhibit a hysteresis
not seen in those of the kink model and a difference in
scale. The discrepancy in resonance frequency and hys-
teresis behavior is attributable to the fact that we have
used a linearized kink model. Presumably, the use of a
higher-order expansion in Eq. (4.4) would y\eld a behavior
analogous to that of a soft nonlinear spring'® thus reduc-
ing these discrepancies. It is not clear, however, to what
extent the difference in scale would be resolved by such a
refinement.

Y. GAUSSIAN WHITE NOISE

The term n(x,t) in Eq. (2.1) is here considered to be
Gaussian white noise with zero mean (7n(x,t))=0 and
autocorrelation function

R, (&r) = (n(x,0n(x + {0 4+7)) =028(£)8(r) . (5.1)

The variance of the noise a,, is connected with the loss a
and the absolute temperature T through'’

a,,=41rakT/¢ojo/\., , 5.2

where k is the Boltzmann constant.
In the vectorized algorithm we find it convenient to in-
troduce the noise term in p-f space, N*(t), as

NP =F~{oqexpli(8,+6,))] , 5.3

where F~' denotes the Fourier transform from w to ¢
space, and 8, and 6, are stochastic variables uniformly
distnbuted between 0 and 2, with an upper limit in p
and w of ppay =1/24x and w,, =m/Af, Ax and Ar being
the resolution in space and time, respectively. Standard

Hamiltonian perturbation theory for the fluctuations Au
in the fluxon velocity leads to the power spectrum for
Au,"

1
Sau(w)=7od(1—udy”? . (5.4)
.o ! " wl4a?
with the average velocity u, given by Eq. (2.6). By a
Fourier transform of Eq. (5.4) we obtain the autocorrela-

tion function for Au as an exponential
od(1—ud)”
16a

Thus Au(t) is a normal process with zero mean and
standard deviation'®

Ry )= e-cirl, (5.9)

Opy = —————— . ’ (5.6)

Defining the period of a fluxon revolution according to
Eq. (4.6) we calculate the average frequency fluctuation as
the average of the instantaneous frequency fluctuation
Au /I over one average period of revolution

A 1 t+(T) d )
f=(_f)- f’ Au/ldt . (3.7

From Eq. (5.7) it follows that A/ has a normal distribu-
tion with zero mean and the standard deviation,'’
in

2u
9 (5.8)

“al

1 | —expl—al/ug)

UA/=T¢7Au

al

A numerical simulation with ¢,=8.8X 107" is seen in
Fig. 9 showing a typical frequency distribution of Af
about the fundamental frequency fo=ug/l. The connec-
tion between the standard deviation and the half-power
linewidth is

Af|ﬂ=\/ 81!’\204{ (5.9

when Af is normal distributed.
Figures 10 and 11 show a comparison of the standard
deviation predicted by this model Eq. (5.8) and the results

Distribution density
3.0x10% ]

2.0%108 ;

1.0x10%

o Ay I M 1 v 1 S
0.048782  0.046784  0.046786

Revolution frequencies fa
FIG. 9. Distribution of revolution frequency f,. Numencal

simulation with Gaussian noise drive: a=0.01, y=0.034,
7,=8.8x10"* and /=20.

e
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F1G. 10. Standard deviation of revolution frequency o, for
white Gaussian noise drive as a function of bias current ¥, for
a=0.0l, =8, and 0,=0.01, 0.05, 0.10, and 0.20. (a) Numeri-
cal simulation. (b) Hamiltonian perturbation theory.
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FIG 11, Standard deviation of the revolution frequency o,

for white Gaussian noise drive as a function of bias current y,
for 1=0.01, 1=20, and 0,=0.01, 0.05, 0.10, and 0.20. (a) Nu-
mercal amulation. (b Hamiltonian perturbation theory.

from the numerical simulations for the lengths /=8 and
1=20, respectively. As can be seen, the model is able to
predict the right qualitative dependence on the length, the
noise amplitude, and the bias, but the model predicts an
overall standard deviation that is about a factor of 10 too
large. The reason for this discrepancy is at present not
known.

In closing, we note that for y values near 0.3 it was
found necessary to augment the time resolution (by reduc-
ing 41 to avoid spurious peaks in Fig. 10(a). The ex-
istence of such spurious peaks might be an indicator of
the onset of chaotic behavior at nearby points in parame-
ter space. In fact, parameter values y=0.3 with a=0.01
lead to chaotic creation of fluxon-antifluxon pairs in the
study reported by Eilbeck et al.?®

V1. COMPARISON WITH EXPERIMENTS

The rapidly decreasing linewidth with increasing bias
shown in Figs. 10 and 11 is in qualitative agreement with
the experimental observations of Fig. 1 in Ref. 10.

To compare quantitatively the calculated results with
these experiments we use in Eq. (5.2) data reported by
Scott et al.® For the junction No. N25L, assuming a tem-
perature of 4 K, Eq. (5.2) gives ¢,=0.0052. Noting from
Fig. 9(a) that o scales linearly with g, we calculate from
Eq. (59) a normalized half-power linewidth
Afy/,=5.5% 107 at y=0.2. Taking as the normalized
resonance frequency fo=uqy/l=0.125 we calculate a rela-
tive linewidth Af,,,/fo=4.4X10"% The physical reso-
nance frequency for junction No. N25L was 2.3 GHz."
This yiclds a physical linewidth of 10 kHz. Comparing
with the experimental results shown in Fig. 1 of Ref. 10
and noting that ¥ =0.2 corresponds to a bias point near
the bottom of the zero-field step, we find excellent agree-
ment. The same calculations for junction No. N5S3C.*
again for T=4 K and y=0.2, yield Af,,,/f
=2.3x 1078 The physical resonance frequency for junc-
tion No. N53C was 8.3 GHz, which leads to a physical
linewidth of 18 kHz, once again in excellent agreement
with experimental results.

VII. CONCLUSIONS

Computational studies of the linewidth of the radiation
emitted by Josephson junctions require extremely high
resolution. For this reason we developed a pseudospectral
method for solving the nonlinear dynamical equation
describing a circular Josephson junction oscillator. Be-
cause the algorithm makes heavy use of fast Fourier
transforms it was implemented on a CRAY-1 vector pro-
cessor. Driving terms corresponding to physically realis-
tic situations, i.e., sinusoidal microwave irradiation and
internal thermal noise, were considered. In the second
case the computational results were compared with exper-
imental results reported in the literature, and excellent
qualitative and quantitative agreement was found. In ad-
dition, in both cases we have compared the computational
results with approximate analytic results based on pertur-
bation theory. Here the agreement was qualitatively good.
but quantitative discrepancies were found, indicating a
need for further development of perturbation theory.

\
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A mechanical analog for the double sine-Gordon cquation is proposed and used to analyze solitary solutions for arbitrary
parameter values. The extension of this analog to other equations of the multiple sine-Gordon class is also considercd.

1. Introduction

The «ine-Gordon equation (SGE) has received
much attention during the past years in connection
with a remarkable variety of problems of physical
mterest [1]. in condensed matter physics the SGE
has been used to model one dimensional chains of
aoms on a periodic substrate potential. In this
content, however, while the regular structure of
such chains makes it natural to consider periodic
potentials, there is no obvious reason for restrict-
g these to single sinusoids. This fact has led to
antncteasing interest in constructing modified
sne-Gordon  equations with periodic but not
anusoidal potentials {2]. One way of doing this is
by including in the substrate potential Fourier
components higher than the sine-Gordon one, this
leading to the so called “multiple sine-Gordon”
cyqudations [3):

N A
AT D = sin(9/i)=0. (1)

Among these equations a relevant role is played by
the Jouble sine-Gordon equation (DSGE) (N =2
i ey (1)

A
o,,—¢,‘+A,sin'p+—zlsin(¢/2)-0. (2)

{inpartimento di Fisica Teorica ¢ sue Mctodalogic per le
Soenze Appheate, Universita di Salerno, 84100 Salerno, ltaly.

which just represents the first step toward a model
for linear chains of atoms on generic substrate
periodic potentials. Eq. (2) is also connccted with
several interesting physical phenomena, such as
spin dynamics in the B phase of superfluid *He (4],
propagation of resonant ultrashort optical pulses
through degenerate media [5], nonlinear excita-

‘tions in a compressible chain of xy dipoles under

conditions of piezoclectric coupling [6], ferromag-
netic chains [7), organic conductors {8, 9], etc.

Since the DSGE is not integrable (the only
integrable equation of family (1) is the SGE), it
has been investigated numerically by several
authors for particular values of parameters A}, A,
[9, 10). Depending on these values, different typi-
cal solitary wave solutions were found. A complete
numerical investigation of the dynamical proper-
ties of eq. (2) with A, A, varying in the range
(— o0, + o) is, however, still lacking [11]. Further-
more, in spite of their physical relevance, very
little exists in the literature on equations of type
(1) for N> 2.

In the present paper we propose a mechanical
analog for the DSGE which easily extends to all
the equations of type (1). The first mechanical
analog for a soliton equation was given by Scott in
1969 for the SGE [12]. More recently, Cirillo et al.
have constructed a more sophisticated SGE ana-
log, and used it to solve practical problems in the
Josephson effect area [13). The mechanical analog

0167-27%9 /85 /503.30 © Elsevier Science Publishers B.V.

(North-Holland Physics Publishing Division)
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proposed here is a natural extension of Cirillo’s
one to the case of egs. (1). The aim of this paper is
to give a simple and unified picture of some of the
properues of cquations of type (1), by visualizing
them on thns mechanical analog. The paper is
organized as follows: we describe the details of the
mechanical analog for the DSGE, and indicate
how dynamical equations arise. Next we consider
sohitary wave solutions of (2) both in terms of the
mechanical analog and by direct integration of the
cquation. A brief discussion on the extension of
the model to equations of type (1), and perspec-
tives of future studies will be given in the conclu-

S1OnNsS,

2. Experiment, model

The generic section of the mechanical transmis-
sion line for the DSGE is shown in fig. 1. It
consists of the following elements: an aluminium
dink AL a piece of solid rubber rod B, two pendula
respectively of length /1. /, and mass m, m,, and
a gearing mechanism C to provide coupling be-
tween the two pendula. The aluminium disk and

tig 1 A scction of the mechanical line for the double sine-
Crordon ciquation

the two pendula are rigidly fixed to the axis of the
transmission line. The rubber rod B provides the
elastic coupling between the sections while the
mechanism C is realized with a gear of ratio } and
connected to the transmission line as in fig. 1. A
practical realization of a segment of the line is
shown in fig. 2. By assuming the dissipative effects
on the line proportional to ¢, ,, we have for the ith
section the following difference differential equa-
tion:

I¢:.u+ a¢,_,= k(¢i+l - 2¢, + ¢1-l)
—mgl sin(¢,+8)
-m,glysin(¢,/2+y). (3)

Here [ denotes the moment of inertia, a the
damping constant, & the torque constant of the
rubber rod, and mg/,,m,gl, the gravitational
restoring torques of the pendula per section of the
line, 8 and ¢ are initial phase angles of the two
pendula with respect to the vertical line, fixed
when the gear wheels are assembled into the gear-
ing mechanism C. (Since the two pendula are
rigidly connected through the gearing mechanism
C, the introduction of two phase angles appears
redundant; however, it will be useful for later
developments. Furthermore, we assume the mech-
anical line to have infinite length, so that we will
not be concerned at the present with boundary
conditions).

Taking the ith section to be of length Ax, eq.
(3) is written as

(1/8) .0~ k(Ax?/8) (01 = 26, + $,,)/Ax"
= —(a/g)e, ,—m sin(¢, +6)
—mylysin($,/2+ ). (4)
When a = 0 (lossless case) eg. (4) may be obtained

from the hamiltonian of the collection of pendula,

u=->:{5[u/g>¢z,+<ka.xvg)‘—%5-;i’—
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Fig. 2. A practical realization of a scgment of the¢ DSGE-line.

in the external potential
(Lo )= =[ml cos(¢,+8)
wm,yl,cos(9,/2+¢)]. (6)

Measuning distances in units of (k/g)'/24x and
tme in units of (7/g8)'/%, eq. (4) reduces, in the
it 3y = 0. to

5 == —v#,—Asing = A,sin(9/2)
- A cos¢ ~ A cos(9/2), (7)
where vy = a/g and

,\| —‘-I)llllc()Sa. )\zamZIZCOS\Pv (8)

No=milf - Azl)‘/z~ A= (’"%lg_)‘zz)vz-

When a=0 and §=0 (mod=), ¢ =0 (mod7),
¢y. (7) is recognized as the DSGE with |A,| = m,/,,
I\ .} =m.l,. From egs. (7)-(8) it is seen that a
Jetimite choice of the initial phase angles 8,y of
the pendula fixes the relative signs of A; and A,.
This fixes the zero points of the mechanical line
t1 ¢, the points from which to measure angles) for
anyv parucular combination of the signs of A, A,
in ¢q (2) as follows. For A, >0, A,>0 we have

0=0, ¢y=0 in eq. (8), and a zero point line as
shown in fig. 3a. (The white pendulum denotes the
one with mass m,, while the black denotes the one
with mass m,.)

In similar way it is seen that the cases A, > 0,
A, <0; A, <0, A;>0; A <0, A;<0; ineq. (2)
are respectively obtained by letting 8 =0, ¢ =,
O=m ¢=0;, §=m, ¢=mn in egs. (7), (8), this
corresponding on the mechanical line to having
fixed the zero points respectively as in figs. 3b, 3c,
3d.

It is worth noting, however, that the model
presented (i.e., eq. (7)) is more general than the
DSGE, having the possibility of freely fixing the
initial relative phase angles (8 — ¢) of the pendula
by properly assembling the gear mechanism C.

a b c d

|

A0 AP0 A<O0 A0
AP0 A0 AP0 A0

. Fig 3. Zero point lines for different values of A, A,.
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3. Behavior of the potential energy and solutions of
DSGE

Being in general possible to think of the motion
of a kmk of eq. (2) as the motion of a classical
particle in a reversed potential —uv(¢)

(o) =X cosp +A,cos(¢/2) (9)

1018 uscful to consider how the potential energy of
the pendula varies as A\, A, 2 0. Let us start by
analyzing first the cases A, >0, A, >0 and A <0,
A.>0. For A; >0, A,>0 one knows from the
previous discussion that the zero point line is with
both pendula down as in fig, 3a. This corresponds
to an absolute minimum of the potential energy.
Starting from ¢ =0 and letting the white pendu-
lum move by 27, one reaches the configuration in
fig. 3b. It is casily verified that this is a stable
equilibrium configuration if the ratio of the gravi-
tational torques of the black and white pendula is
<4.ic if A, <4);; otherwise it is unstable. For
A, <d), in fact, the potential energy is found to
have absolute minima at ¢ =0 (moddn), relative
minima at ¢ = 27 (mod4~) and absolute maxima
at ¢ = +§ (moddn) where § =2cos ™' (A, /4N))
+ 2= while for A, 2 4A, the relative minima at
¢ = 2= (moddw) become absolute maxima (sce
fig. 4). A qualitatively different behavior is ob-
tained when A, <0, A,> 0. In this case, the zero

’ Can

tig 4 Ditlerent hehaviours of the potential of the pendula as
VoML are vaned in the range (- o2, + )

point line is fixed as in fig. 3c. This is a stable
equilibrium position (mod4=) if A, 2 4|A,| and
unstable if A, <4|A,]. In this last case, however,
two stable equilbrium positions are found at ¢ =
+68 (modd4m) where 8§ =2cos™'(A,/4[A[). The
potential energy for A, 2 4|A;| is found to have
absolute minima at ¢ = (mod4=) and absolute
maxima at ¢ = 27 (mod4=); while for A, < 4|)\,]
it has absolute minima at ¢ = +8 (moddw). ab-
solute maxima at ¢ =27 (modd=) and relative
maxima al ¢ =0 (modd4n).

The corresponding behavior of the potential en-
crgy for negative values of A, is obtained from the
previous case (A, >0) by letting ¢ = ¢ + 2= in
eq. (6). Fig. 4 summarizes the different typical
behavior of the potential of the pendula as A,,
A, E(—o0, +o0). The lines A, = +4A, separate
regions of the A, -\, plane in which the configura-
tions of fig. 3b and 3c are stable or unstable
according to the previous discussion. Of these
eight regions, however, only four are physically
significant since the other [our are obtained simpliy
by shifting the potential energy. We therefore will
focus in the following only on regions A, B. C. D
of fig. 4 (case A, > 0). From the behavior of the
potential energy in these regions it is evident thu
47-kink solutions of the DSGE are possible only
for parameter values of A, A, corresponding to
regions A, B, C, of fig. 4. These solutions are easily
seen on the analog. A 4x-kink solution of eq. (2)
corresponding to Ay, A, > 0is shown in fig. 5. We
see that while the white pendulum moves around
by 4=, the black one accomplishes a 2= turn.
giving risc to a topologically stable 47 jump. The
difference between kinks of regions A and B can
be seen on the analog as a more rapid variation of
the gravitational torques around ¢ = 0. For A| < 0.
A, >0 with A2 4(A,[47 jumps are still possible
(sce fig. 6). but in this case the starting and final
configurations are the ones shown in fig. 3c. Again
it is evident from the mechanical analog that these
are topologically stable solutions. In spite of the
different shape 4n=-kink solutions assume on the
mechanical line (see figs. 5, 6) for parameter vaiucs
characterizing regions A, B, C of fig. 4, it is worth
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2,20, 2,00

Fig 5 A dnkink of the DSGE on the mechanical line for A, > 0, A, >0

<0, A0
N, >4

0= 4m

Fig. 6. A dn-kink of thc DSGE on the mechanical line for A, <0, A, >0. A, 2 47,1
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noting that the change of the gravitational torques
of the pendula in configurations of fig. 5 and fig. 6
is the same. In region D of fig. 4, two difTerent
types of kinks are possible: a small 28-jump and a
big 47-28 one with § <#. The first type corre-
sponds on the analog to a transition between the
two stable equilibrium configurations at ¢ = 16
in which the black pendula pass under the line (see
fig 7). while the second type corresponds to the
transition § — 47-§ in which the black pendulum
pass over the line (see fig. 8). Of these mechanical
analog solutions one can easily find the corre-
sponding analytical ones. To this end we look for

A, <0, ;>0
Ay < 4in

i
®-- 2cos"(k,/4lk1l)

|
¢ =2cos™ (A yalr,))

Fig. 7 A 28-kink, §=2 cos (A, /40 ). A <0, A >0
A< A

X,<0, ;>0
A4

{
® = 2cos™ (A4 )

¢=2TC

Fig 8 A 4#-28 kink for the same parameter values as in fig 6

solitary wave solutions of eq. (2), i.e. solutions of ‘
the form !

o(x,0)=¢(£), (10)

with £=(x—ot)/y(1-0?), vE€(-1,1) and &
satisfying the boundary conditions lim, . , . ¢(§)
=¢, (¢, are constants). By inserting ansatz (10)
in eq. (2) and multiplying both sides by d¢/d{ we
obtain (after one integration in §)

%(:—:)2+ U($)=E, (11)

where U(¢)= A cos¢ + A,cos(¢/2), and £ is a
constant of integration. From eq. (11) one gets

s-eo=L°d¢/{2(E—xlcos¢

—)\zcos(¢/2))}m. (12)

which gives ¢ as a function of ¢, i.e. eq. (12)
actually determines the inverse function. It 1s in-
teresting to note that eq. (12) is exactly solvable in
terms of elliptic functions, just as the ordinary
SGE. Furthermore, for specific values of E and ¢_.
it is possible to invert (12) in terms of elementary
functions. To see this it is suitable to efTect the

|
& = 41T 2 cos” (N aln, )
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Fig 9 A mechanical analog for the triple sine-Gordon equation [N =3 in cq. (1)] (for graphical convenience gears have been drawn

as virgies)

change of variable ¢ =2tan"'t in eq. (12). The
integral in (12) then becomes

$[disilatt + B2+ v), (13)

with a=2E~A +A,), B==-AE+A), y=
2(F£ = A, = A,), which is easily evaluated in terms
of clliptic integrals of the first type (see ref. 14). By
choosing ¢ _=0, ¢ , =47, ¢.=(d,+¢_)/2 and
the constant £ (energy) equal to —A; — A, one
finds from eq. (12) that

5 =dtan"' {(1+4)A,1/A)"?
<sinh (£ (A +A/8)(6- &)} +2m  (14)

(where the assumption A, >0, |A|/A;> ~ } were
made). Eq. (14) represents a 4=-kink solution of
¢q. (2) for parameter values A, A, such that A, >
0. |[N1/Ay> = L which correspond the mechani-
cal analog solutions shown in figs. 5-6. Similarly

the choice E = (A4 = 4|A,|AL~ |A,{})/4]A,| and
¢ ,= +2cos 1 (A,/4|A]) in egs. 12-13 leads to
the function

¢=atan" (V411 = N D/(IN1 + IN,)

xtanh{+p(¢-4¢5)], (15)

while the choice E = (A} = 2{A[[A = |A |2)/4]A,|
and ¢ .= +2cos™ ' (A,/4|A,|) £ 27 gives

¢ =4dtan" (V4[] + [A,)/(41A 1 = 1A,0)
xtanh(+p(£-¢,)), (16)

with p=((16/A;]2 = |A,)})/64A )12 As it is
easily verified, eq. (15) represents a 28-kink corre-
sponding on the mechanical line to fig. 7, while eq.
(16) is the 47-28 kink of fig. 8. Thus {or parameter
values characterizing regions A, B, C, of fig. 4 an
analytical solution of the DSGE is given by (14),

"while in region D two analytical solutions exist
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(respectively given by egs. (15)-(16)), all in agree-
ment with our previous discussion. Furthermore it
18 not difficuit to verify that (14)-(15)-(16) are
stable and have finite energy (as indicated by the
mechanical model). Solutions similar to these were
also derived by other authors for lightly modified
versions of eq. (2) (see rel. 9 and 15). We remark
finally that is appears evident both from the
mechanical model and by direct computations that
the corresponding solutions of (14), (15), (16) for
negative values of A,, are simply obtained from
the previous case (A, > 0) by adding +2=.

4. Conclusion

In this paper a simple mechanical analog for the
DSGE was presented and used to analyze solitary
wave solutions for arbitrary parameter values. The
way in which the analog is constructed makes it a
tool to investigate a large number of equations of
type (1). Indeed, by changing gear ratio’s, and by
including more gearing mechanisms (see fig. 9),
one easily gets models for these equations. A con-
crete use of the analog to investigate inelastic
scattering between the various kinds of kink solu-
tions of these systems will be the matter of later
works.
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The Melnikov function for prediction of Smale horseshoe chaos is applied to the rf-driven Joseph-
son junction. Linear and quadratic damping resistors are considered. In the latter case the analytic
solution including damping and dc bias is used to obtain an improved threshold curve for the onset
of chaos. The prediction is compared to new computational solutions. The Melnikov technique pro-
vides a good, but slightly low, estimate of the chaos threshold.

[. INTRODUCTION

For some years the topic of chaos in the rf-current-
biased Josephson junctions has attracted much interest.
The first papers in that field were probably the qualitative
work by Belykh et al.' and the numerical work by Huber-
man et al. Since then a number of authors have made
numerical calculations,’~* electronic simulations,”~'? and
to a limited extent experiments on real junctions.'’~'¢
One of the things that characterizes almost all this work
1s the lack of analytical methods to predict the onset of
chaos. This situation was recently changed by the analyti-
cal works of Genchev er al.'” and Salam and Sastry,'s
who used the method of Melnikov integrals'*~?' to
predict regions in the parameter plane where chaos
occurs. Their work is in some sense an extension of the
carly work in Ref. 1 on the shunted-junction model, and
in the same spirit equations are derived for various re-
gions of the same qualitative behavior. Together with the
work of Kautz and Monaco’ it is the first step towards an
analytical prediction of chaos in the rf-driven Josephson
junction.

In this paper we review the results of Salam and Sastry
from the point of view of Josephson-junction applications.
For a dectailed mathematical treatment we refer to the
original mathematical literature.'®*=3! Further, we extend
the method of Melnikov functions to predict chaos in a
Josephson junction with quadratic damping. This latter
model—unlike the model with a linear resistor—has the
advantage that analytical solutions are known in the ab-
sence of an applied rf signal, and the method of Melnikov

functions requires fewer assumptions. For both models:

the analytical predictions are compared with numerical
simulations.

The paper is organized in the following way: Section
11 A discusses the application of the Melnikov method to
a Josephson junction with a linear damping resistor. Sec-
tion 11 B discusses the case of a Josephson junction with a
quadratic quasiparticle /- ¥ curve. This model is interest-

3

ing for two reasons: (i) For high temperatures quadratic
damping provides better agreement with experimentally
measured I-¥ curves than linear damping. (i) A full
analytical solution to the equation with quadratic damp-
ing is known. Consequently, the Melnikov technique for
the case with an applied rf signal is more accurate than
the corresponding case with linear damping. Finally, Sec.
III contains our summary and conclusion.

11. THE f-DRIVEN JOSEPHSON JUNCTION

In the following we shall consider systems of ordinary
differential equations of the form

%:ho(X)+€h|(x.f.€) : ()

where X={(¢,y), hg=(/0.8¢), and h,=(f,,g;).
The analytical expression for the Melnikov function for
systems of type (1) is?!

Mit)= [ bo(Xyp(e — 1) AB(X4(t =t0),1)

Lt
xexp[— [, D ho(X, (sN)ds dt
)

where X, denotes the homoclinic orbit. Here the wedge
product is defined by XAY=X,Y,-X,Y, and D,
denotes the partial derivative with respect to X. It is im-
portant to notice that in order to apply formula (2) it is
necessary to know the so-called homoclinic orbits?' for
the unperturbed system (e=0).

The Melnikov function is proportional to d{1y), which
is the separation between the unstable orbit X“(t4,15) and
the stable one X*(#q,f5) (see Fig. 1). If M (tg) has a simple
zero and is independent of € as in (2), then the local stable
and unstable manifolds intersect transversally. The pres-
ence of such intersecting orbits implies that the Poincaré
map has the so-called Smale-horseshoe chaos.?’ A Smale
horseshoe contains a countable set of unstable periodic or-

4686 ©1986 The American Physical Society
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FIG. 1. Homoclinic orbit (dashed curve) and its perturbed
curve (solid curve). Distance between trajectories, d(ty), is
shown.

bits, an uncountable set of bounded nonperiodic orbits,
and a dense orbit. It should be noticed that even though
the Smale horseshoe is extremely complicated and con-
tains an uncountable infinity of nonperiodic or chaotic or-
bits, it is not an attractor. However, it can exert a
dramatic influence on the behavior of orbits which pass
close to it. These orbits will display an extremely sensitive
dependence upon initial conditions, and exhibit a chaotic
transient before settling down to stable orbits of all
periods which may constitute a strange attractor. There-
fare the existence of the Smale horseshoe can be seen as
the first step towards a possible chaotic behavior. Thus
Melnikov's theory is expected to provide the lower boun-
dary of the chaos threshold.

In the following we shall consider two different cases.

{i} Linear damping, which is the most commonly as-
surned case but for which an analytical solution to the un-
perturbed case (i.e., no applied rf signal) does not exist.
Thus the conditions for the use of Melnikov’s method are
only approximately satisfied.

(i) Quadratic damping, which in particular for high
temperatures is a closer approximation to the I-V curves
in certain cases. This model has the important advantage
that a full analytical solution in the absence of an applied
rf signal is known.

A. The Josephson junction with lincar damping

The equation for a current-driven Josephson junction
may be written' =’

b=y,
(3
y = —sind +€e[p—ay +py8in(Q1)] .

Here the overdot indicates derivative with respect to
time, a is the constant damping parameter, p is the nor-
malized dc bias current, g, is the normalized microwave
current amplitude, and Q1 is the applied frequency nor-
malized to the Josephson plasma frequency. € is a pertur-
bative parameter that may eventually be set equal to I,
since in this case Melnikov's integral is € independent.

The unperturbed system (e=0) is

o=y,
: (4)
)= —sind .

The heteroclinic orbits for the system [Eq. (4)] are given
by

Pu(t —tg)=+2tan~[sinh(t —1y)] ,
(5)
it —tg)=+2sech(t —1tq) .

The Melnikov integral, Eq. (2), for the system (3) is
M(ty)= f_j:y,,(! —to)lp+pysin(Qe)—ay,(t —t4)]de

=p f::yh(r)dt+ [p| f_+:y;.(t)cos(m)dr]
Xsin({ltg)—~a f::yi(t)d: :

(6)

Performing the integrals of Eq. (6) with the heteroclinic
orbits, Eq. (5), the following result is obtained:

M{ty)=*2np—~8atlmp sech(rQ/2)sin(ty) . (1)

Rearranging Eq. (7), we find a necessary condition for
the intersection of the stable and unstable orbits to be'™'?

| +p+4a/m|cosh(r/2)Sp, . (8)

According to the previous discussion, Eq. (8) is a neces-
sary condition for the existence of a Smale horseshoe.
[The sufficient condition requires the existence of simple
zeros of M(tg).] The formula deviates® from results in
Ref. 18 by the factor 2/Q0. The condition is given in
terms of the four parameters of the problem: g Q, and
21 Numerically chaos has been investigated®* in the Q-
versus-p; plane for fixed =02 and p=0. Comparing in
Fig. 2 the theory [Eq. (8)] and the simulations** for
a=0.2, we find that Eq. (8) predicts toc low a threshold
for chaos. Kautz and Monaco® speculate that intersec-
tions between stable and unstable manifolds exist every-
where above the line given by Eq. 8), but that the result-
ing chaotic orbit is unstable with respect to the zero-
voltage state and thus not observed. Tlhie discrepancy may
be illustrated by considering the case of small . For
Q <@ the impedance of the capacitor is very large and the
circuit may be considered almost as if it were at de.  For
p=0 the system is then well behaved at least up to py=1
(shown as the dashed line in Fig. 2). The trajectory in the

20

Q

FIG. 2 Linear damping: threshold for chaos in parameter
plane for p=0, a=0.2. Solid curve: Eq.(8). Triangles: numer-
ical results from Ref. 4.
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phase plane is an ellipse centered at the equilibrium point
(0,0). The voltage amFlitudc is approximately proportion-
al 0 p,/(1+a*2Y)'?, which tends to zero as 2—0.
For 2 =a, the impedance of the capacitor is the same as
that of the resistor, and the capacitor can no longer be
neglected.

For 520 very few systematic investigations exist, be-
cause the parameter space is four dimensional; however,
Refs. 3, 5, and 6 contain numerical results, which can be
compared with results obtained here. The structure of Eq.
(8) is interesting and may be qualitatively understood
from the following simple arguments. The lowest thresh-
old of the applied rf current depends on the separation of
the dc bias current from the quantity p.=4a/r. From
other investigations' it is known that p, is the lowest bias
current where rotating pendulum solutions exist; for this
particular value of the bias current the trajectories for ro-
tating and oscillating solutions of the pendulum equation
get close to each other in the phase plane. Thus, for bias
currents close to p, a very small perturbation may shift
the system from one orbit to the other, i.e., the threshold
for the applied rf current is lowest.

We may summarize the findings for the case of the
linear resistor by saying that numerically p should be
within a band of magnitude Ap given by

Ap=p, sech(mfl/2) (9)

centered at p, in order to obtain horseshoe chaos. Figure
3 shows this band in the a-versus-p plane. p,=4a/7
separates regions of qualitatively different behavior in the
parameter plane of the unperturbed system. For p<p,
only oscillating solutions exist. For p, <p <1 oscillating
and rotating solutions exist, and for p>1 only rotating
solutions exist. For large a, p, is known to deviate from
p. =4a/m as shown in the figure. How the chaotic band
develops for large a is outside the scope of the present pa-
per. Here we only notice that the chaotic band follows
the linear portion of the p, curve for low a.

00 05, 10

FIG. 3. Bifurcation diagram. Dashed curve: p,=4a/r.
Solhd curve: p, from numerical simulation. Crosshatched area:
region of chaos.
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B. The Josephson junction with quadratic damping

If in the system (3) it is assumed that the resistance
varies with the voltage such that R=const/V
=(#y /2e)/V, one obtains,” with the same normalization
as in the system (3),

¢ +k($) +sing=p+p, sin(Qe) , (10)

where k =(yC)~'. Unlike the case with linear damping
the exact analytical solution to Eq. (10) with p;=0 has
been obtained.?® Introducing y =4 one gets

2
%+2ky2=2p—2$in¢ (1

with the complete solution (assuming p > 0)
yi=p/k +4/(1+8k*)' 2 cos($+B)
+C,exp(—2k¢), (12}

where tanf=2k and C, is an integration constant to be
adjusted by the initial condition. Looking for the steady-
state solution at finite voltages the transient term vanishes
and Eq. (12) becomes

yi=pdlp+pocosi¢ +B)] , (13)

where pg=2k /(1+4k2)'/? and yo=k ~'72. If the voltage
¢ goes negative, the damping term in Eq. (10), ké°,
should be replaced by k|4 |é. However, the solution
to the resulting equation for ¢ <0 is obtained by a simple
symmetry argument. We may note there that the parame-
ter po has the same physical meaning as the parameter p,
defined for the linear resistor. Inserting y =¢ and rear-
ranging, we may express the solutions to Eq. (13) in terms
of elliptic functions.* For p>pp we get

(¢+B)/2=am(u), %?—='=yo(p+po)'/zdn(u). (14)

Here am is the amplitude function and dn is the Jacob:-
an elliptic function of argument u =(yo/2)(p+po)/*(t
—to) and modulus m =2/(1+4p/py). The trajectory of
the solution, Eq. (14), is shown in Fig. 4 for p=py, and for
p slightly larger than pg. To proceed we write Eq. (10} as
the two-dimensional vector field,

=y,
. (15)
y=-—sing—kd 1 +p+er,sin(Qr) .

FIG. 4. Phase plane trajectories of Eq. (14) with k=01
Upper curve: p=0.2. Lower curve: heteroclinic orbit for
p=po=0.196.
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In the following we shall use the analytic solution, Eq.
114), to obtain the transverse intersections of the stable
and unstable manifolds by finding the zeros of the Melni-
kov function. In order to do that it was noted in Sec. II
that it is necessary to have a heteroclinic orbit for the un-
perturbed system {(e=0) connecting hyperbolic saddle
points. So we must investigate the fixed points of Eq. (13)
when p=p,. The fixed points are situated on the ¢ axis of
the phase plane (¢,y). It is known'®~23! that the vector
field (#,y) should vanish at these points. This is found to
be the case {i.e.,,  and y are simultaneously zero) in Eq.
(14) for p=py. Further, we shall show that the equilibri-
um points of the vector field (y,y) [Eq. (15) with €=0]
are of the center type at

(&, 7)=(~sin"Y(p)+2nm, 0), n=0,+1,£2,...,
(16)
and of the saddle type at

LS

(6.5)=(—sin""(p)+(2n + ), 0,
=0,+1,%£2,.... (17

We restrict the discussion to the equilibrium points in
the interval

-r-BZ$6S7-PB. (18)

This means that we consider values of p such that p< 1.
For p=py we find from Eq. (14) that m=1, and the limit-
ing values of the elliptic functions are given by**

dn(u,1)=sech(u) and am(u,1)=gd(u), (19)

where gd{ u) denotes the Gudermannian function. In or-
der to get more information on the behavior of the system
about the point p=py, and in order to use the simple func-
tions in Eq. {19), we rewrite Eq. (15) by adding a perturba-
tion term Ap=p —po=€(r —ry) to obtain

o=y,

] (20)
y=—sing —k($)?+po+e[r; sin(Qt)+(r —rg)] .

For e=1, Egs. (15) and (20) are identical. For e=0 we
obtain the following heteroclinic orbit by using Eq. (19):

[ (0),pa()]=[4tan~"[exp(bt /2)]
—B—m, bsech(bt/2)] , 1)

where b =yo(2pg)'’2. The Melnikov integral is then given
by [Eq. (2)]

Mitg)= [~ bsech[b(t —t5)/2]lp—po+pysin(Q)]

1=ty
Xexp[fo 2kb sech(at’/2)dt’ |dt. .

(22)
Evaluating Eg. (22), we find
M ty) =(p—pylsinh(2rk) 7k
+p1b[Fy cos(Qty) + Fysin(£eg)] (23)

where

P, —
4 (@) (b
Il 1
2t (o]
1t 1
0 2 - .

00 1.0 20 @

FIG. 5. Quadratic damping: Threshold for chaos in parame-
ter plane [Eq. (24)). (a) p=0, k=0.2; (b) p=0, k=0.1; and (c)
p=0.1, k=0.1. Chaos above curves.

Fi= [ sech(be/2)sin()
Xexp(4k tan~'[sinh(bt /2))}dt
and
Fy= [ sechibt/2)cos()
X exp|4k tan~![sinh(bt /2)]}d! .

It is easy to see that the integrals, F, and F,, are finite
and not zero. It is also possible to see that transversal
zeros for the Mzlnikov function, Eq. (23), exist. A neces-
sary condition is

p1>(p—polsinh(2mk) /kb(F} + F3)!7 (24)

The prediction for the onset of horseshoe chaos, Eq.
(24), is plotted in Fig. 5 as a function of Q for different
values of parameters p and k. Note that the structure of
Eq. (24} is similar to that of Eq. (8). In Eq. (24), p, has
the same significance as p, =4a/w in Eq. (8), and the
threshold rf current depends on the separation between p
and py. :

Alternatively, one might derive a condition for inter-
secting perturbed heteroclinic orbits by considering also
the loss and bias terms as perturbations and use the
heteroclinic orbit in Eq. (5) for insertion into the Melni-
kov function. The calculation proceeds in the same
manner as for the linear resistor and the result is a thresh-

: "
P
14 (o)\ 7
3} /]
/
2+ v v . // 1
~ ¢

I 57— R}
o A n i

00 0 5 20

FIG. 6. Quadratic damping: Threshold for chaos in parame-
ter plane for p=0. Solid curves: Eq. (25); dashed curves: Eq.
(24). (a) k=0.3; (b) k=0.1. Numerical results for k=0.1: Tn-
angles, chaotic solutions; circles, periodic solutions.
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FIG. 7. Bifurcation diagram. Solid curve:

po=2k(1+4k?)!/? a5 defined in Eq. (13). Crosshatched area:
region of chaos.

old condition given by
p12 | xp+2k |cosh(m1/2) , 25

which is identical with Eq. (8), except that 2k replaces
4a /w. For small values of the loss one should expect Eqs.
124) and (25) to give identical results. In fact, the expan-
ston of Eq. (24) to first order in the damping constant k is
identical with Eq. (25). Equation (24) may be considered
a more precise condition since it is derived from the
heteroclinic orbit to the unperturbed solution when both
loss and bias are taken into account. Figure 6 shows a
comparison between Eqs. (24) and (25) for k=0.3. A
comparison between Egs. (24) and (25) for k=0.1 and
some corresponding numerical simulations are also
shown. We note that the Melnikov function gives too low
a boundary for the onset of chaos as in Fig. 2. An equa-
tion similar to Eq. (24) cannot be derived for the case of
linear damping, since the solution to the unperturbed sys-
temn is not known at present.

For the case of a quadratic damping term it is possible
to make a similar discussion as that in connection with

| ——
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Fig. 3. Here, however, the analytic expression for the pg
curve is known [Eq. (13)]. For k—s e it approaches unity
asymptoticailly. The band corresponding to chaos is given
by

Bp=p,bk(F} 4+ F})'/sinh(27k) , (26)

which is shown crosshatched in Fig. 7.

III. SUMMARY AND CONCLUSION

Chaos in the rf-driven Josephson junction was investi-
gated analytically by means of the Melnikov-function
technique. With a linear damping resistor only an ap-
proximate solution for the unperturbed phase plane trajec-
tory could be used in the Melnikov integral. For the case
of a quadratic damping term the analytic solution to the
unperturbed case has been used, and an improved thresh-
old curve for the onset of chaos has been obtained. For
both cases, however, the Melnikov prediction gives a
threshold somewhat lower than that found by direct com-
putation. That is because the Smale horseshoe, whose ex-
istence in the Poincaré map is predicted by Melnikov's
theory, is not an attractor; indeed the set of points asymp-
totic to it will have zero measure. Thus the existence of
Smale horseshoe does not imply that typical trajectories
will be asymptotically chaotic. In fact, in some cases we
have transient chaos followed by asymptotically periodic
motions. However, it may happen that some of the orbits
constitute a strange attractor. Therefore the “presence” of
the Smale horseshoe is the starting point over which a sys-
tem can undertake some of the possible routes to chaos.
Apparently the method seems to fail for low applied fre-
quencies. Although the Melnikov technique seems to give
a good estimate of the chaos threshold, further work is
needed to obtain a detailed analytical criterion.
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The linewidth of the radiation from the Juscphson riag oscillator under the influence of an external ficld is predicied by a
new perturbation analysis which is an improvement of an earlier kink model. The linewidih is due 10 background oscillations

ruther than kink velocity fluctuations,

The Joscphson-junction fluxon oscillator pro-
duces microwave radiation of very narrow line-
width. Recently, this property which is important
for potential applications has been demonstrated
cxperimentally [1] and by computational solution
of the perturbed sine-Gordon equation using a
pseudo Fourier spectral algorithm implemented
on 4 CRAY-1-S vector processor (2],

In the latter reference a discrepancy between
the computational results and the predictions of
the kink model was found. In the present note *!
an improved perturbation analysis is presented.

The circular Josephson tunnel junction of over-
lap geometry is modelled by the normalized per-
wurbed sine-Gordon equation (3]

o, — &, —sin ¢ =ap, +y+ng sin &, (1)
with periodic boundary conditions
0. (0. ) =9.(1, 1), ¢(0,0)=¢(,1), (2)

where the a term represents quasi-particle loss
across the barrier, the y term is the dc-bias cur-
rent, and sinosoidal driving term models micro-
wave irradiation (with amplitude 1, and frequency
§2) of the junction. The circumference of the cir-
cular transmission line, normalized to the Joseph-
son length, is denoted /.

In ref. [2] egs. (1), (2) were solved numerically

*' Based on a master’s thesis by one of the authors (M.F.).

and the standard deviation in the frequency of
electromagnetic radiation from the oscillator de-
fined as o= ({(/, = (£,))*)'/* where [, is the
inverse of the nth fluxon revolution time, 7, and
brackets, { ), denote the average over the revolu-
tions, was computed in the single fluxon case
(solid curve in fig. 1). Furthermore a kink mode!
in ref. {2) based on the separation of the phase.
¢(x, ¢), into a localized kink part and a back-
ground part, $(x, 1) = ¢*(x, 1) + $™(¢), and using
momentum of the kink lead to the results shown
as the dashed-dotted curve in fig. 1. The difference
in scale between these computed and kink-model
results motivated the present investigation.

Asiin ref. [2] we let ¢*(x, t) = 2aH(x — x'(1))
where H is the unit step function and x* (1) is the
position of the kink at time ¢ we get the dilfercn-
tial equation for the background, ¢™(t),

= ¢ —sin ¢° = a¢® + y + 7, sin 2. (3)

In ref. {2] the revolution time of the fluxon was
defined by (¢(x, 1+ T,)—¢(x, 1)) =27 where
brackets now denote a spatial average over the
junction. Introducing the separation, ¢(x, ()=
@ (x, 1)+ ¢2(1), and ¢'(x, 1) =2nH(x - x*(1))
into this definition, we obtain instead

2n

[ f”T'“*(f) dr+¢*(t+ T,) ~¢*(1) =2,
]

(4)

0375-9601/86,/$03.50 © Elsevier Science Publishers B.V, 7
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Standard deviation - Oy

!
0.5 10 15
Driving frequency -

Fig. 1 Standard deviation of clectromagnetic radiation versus
Jdriving frequency 2. Parameters a = 0.01, y = 0.02, ny = 0.01,
and /= 8. Solid curve: Computational solution of egs. (1), (2)
(2] Dashed-dotted curve: Kink model result from {2]. Dotted
curve. New perturhative result using linearized version.of eq.
1) Duashed curve: New perturbative result using the full eq.
(1 Doted and dashed curves overlap away from resonance

region.

where the kink velocity u® =dx*/dt. In the kink
model used in ref. [2] the background terms in (4),
o™ (1 + T,) — &=(r), were neglected. However,
numerical determination of the periodic solution
of ¢y, (3) shows that the background part in (4)
vields the dominant contribution to the fluctua-
tion of the fluxon revolution frequency f,. The
MNuctuations of u*(r) around the power balance
velocity (4], @* =[1 + (da/y7)?]~ /2, turn out to
be negligible. Linearizing eq. (3) around the ground
state. sin "'y, we obtain the dotted curve in fig. 1
exhihiting much better quantitative agreement with
computer determination of the maximal value of
the standard deviation than the kink model used

PHYSICS LETTERS A

26 May 1986

in ref. [2]. However, the maximum is shifted in
frequency and hysteresis is missing. By solving the
full nonlinear equation (3) numerically we obtain
the dashed curve 1n fig. 1. As expected the reso-
nance.frequency is now closer to the value found
in the computer experiment and a similar hyster-
esis phenomenon is observed. The perturbation
theory predicts minima at £ = 0.65 and 2 =0.35§
in fig. 1. At these frequencies the background
frequency is a multiple of the revolution frequency
of the kink. Computational data have not been
obtained at these frequencies.

We conclude that the background oscillation
provides the main contribution to the linewidth of
the microwave radiation from the oscillator.
Quantitative agreement between the prediction of
non-linear perturbation theory and the computa-
tional results for the standard deviation (including
the hysteresis) is found. However, the maximum
standard deviation in the present perturbation
theory occurs at a slightly higher frequency than
in the numerical computation.
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Switching between dynamic states in intermediate-length Josephson junctions
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(Received 15 July 1985)

The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-
length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation
(PSGE) is associated with the growth of parametrically excited instabilities of the McCumber back-
ground curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the
asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation
which predicts how the number, locations, and widths of the instability regions depend on the junc-
tion parameters. A numerical integration of the PSGE in terms of truncated series of time-
dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB
evolve into the fluxon oscillations characteristic of the ZFS's. An approximate analysis of the
Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill's
equation which predicts that the major effect of such a field is to reduce the widths of the instability
regions. Experiments| measurements on Nb-Nb,O,-Pb junctions of intermediate length, performed
at different operating temperatures in order to vary the junction parameters and for various magnet-
ic field values, verify the physical existence of switching from the MCB to the ZFS's. Good qualita-
tive, and in many cases quantitative, agreement between analytic, numerical, and experimental re-

sults is obtained.

1. INTRODUCTION

The appearance of zero-field steps (ZFS's) in the
current-voitage (/-¥) characteristics of long Josephson
junctions results from fluxons propagating along the junc-
tion. This observation was first noted in a pioneering pa-
per by Fuiton and Dynes' in 1973. In the same paper
Fulton and Dynes reported on experiments with a
mechanical analog of a long, lightly damped junction con-
sisting of a chain of elastically coupled plane pendula. In
the regime of high mean voltage (angular velocity) they
found a near-uniform rotation of the pendula, but with
decreasing voltage they observed that this uniform mode
of operation becomes unstable against spatial fluctuations,
resulting in the creation of propagating fluxons or, alter-
natively, a switch to the zero-voltage state. In physical
tcrms the near-uniform rotation corresponds to a junction
which is biased on the McCumber curve.

In the present paper we report on analytic, numerical,
and experimental results which elucidate in more detail
the instability of the McCumber curve. The analytic
work is based on a stability analysis of the perturbed
sine-Gordon equation which describes the dynamics of the
Josephson junction. In the case of zero magnetic field this
equation is linearized around a solution which corre-
<ponds to a uniform rotation of the pendula in the
mechanical analog. The result is a Hill’s equation. The
instability regions of this equation determine the instabili-
ty intervals along the McCumber curve, the number of
which gives the number of ZFS's that can be rcached
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from the McCumber curve.

In the numerical work we use a method based on a sim-
ple extension of the multimode theory developed by En-
puku et al.? which amounts to a consistent expansion of
soiutions of the perturbed sine-Gordon equation in trun-
cated series of time-dependent Fourier spatial com-
ponents, The time evolution of the Fourier coefficients is
determined by direct numerical integration. The zero-
order Fourier coefficient corresponds to a near-uniform
rotation which acts as a parametric driving force in the

“system. In the instability interval corresponding to the

position of the nth zero-field step the zero-order Fourier
coefficient excites predominantly the nth Fourier mode
and gives rise to a spatial variation in the phase along the
junction which evolves into the corresponding fluxon os-
cillation.

The effect of magnetic field is handled in an approxi-
mate way by means of a simplification of the multimode
equations. After some manipulation, the problem is again
reduced to a Hill's equation which now contains the mag-
netic field as a parameter.

The experimental samples studied are niobium-oxide-
lead junctions of overlap geometry. Experimental param-
eter values are adjusted by varying the sample temperature
in a controlled way.

Comparison of the analytic, numerical, and experimen-
tal results yields an agreement that is at least qualitative
and in many cases also quantitative. We have also ob-
served some experimental phenomena, however, that are
not contained in the mode! results.
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1. MATHEMATICAL MODEL
AND STABILITY ANALYSIS

The mathematical model of the overlap Josephson junc-
tion is, in normalized form, the perturbed sine-Gordon
equation’

¢u‘¢n-5in¢=a¢t-ﬁ¢n:-r ’ (la)
6.(0,1)=¢,([t)=7 . ’ (1b)

Here, ¢(x,1) is the usual Joscphson phase variable, x is
distance along the junction, normalized to the Josephson
penctration length A, and ¢ is time, normalized to the in-
verse of the Josephson plasma angular frequency wg. The
model contains five parameters: a, B, y, /, and . The
term in & represents shunt loss due to quasiparticles cross-
ing the junction, the term in 8 represents dissipation due
to the surface resistance of the superconducting films, y is
the uniform bias current normalized to the maximum
zero-voltage Josephson current, 1 represents the normal-
ized external magnetic field, and the normalized length of
the junction is denoted by /.

We first consider the case of homogeneous boundary
conditions, i.c., 7=0 in Eq. (I1b). 1f a=B=y=0 the
McCumber solution of Egs. (1) is exactly*

d=dglt)=2am{t/k k], (2)

where am is the Jacobian elliptic amplitude function® of
modulus k. For nonzero a, 83, and ¥, we assume that Eq
(2) solves Egs. (1) in the power-balance approximation.*
This yields the following expressions for the McCumber
hranch of the I- V characteristic of the junction:

~Sakll) (3a)
rk
—<¢,>_kK(k) (3b)

where K (k) and E(k) are, respectively, the complete el-
liptic integrals of first and second kinds.}

Following Burkov and Lifsic,® we now express solutions
of Egs. (1) in the vicinity of the McCumber solution as

olx,N=dglt) +blx,1), 4

where &, is given by Eq. (2) together with the conditions
of Egs. (3), and & is a small perturbation of the form

&(x,1) =y (explibx) (5)

with b constant. Inserting Egs. (5) and (4) into Egs. (1),
we obtain an ordinary differential equation for y(¢):

V4 (a+PBbly + b1 +cos{dg()]]y =0, (6a)
where ’
h=n=z/l, n=012,... (6b)

and overdots denote derivatives with respect to t.

Equation (6a) is a damped Hill's equation;’ it may have
nnstable solutions in certain regions of its parameter
space. In such regions a small initial disturbance will lead
10 a large responsce in the solution, giving rise to the onset
ol a solution with spatial structure, in contrast to the

. JOSEPHSON JUNCTIONS 175

McCumber solution, As will be seen in Sec. VI, such
solutions evolve into the fluxon oscillations characteristic
of ZFS's.

In the limit of small k, we may approximate Eq. (2) as’

dolt)=wt + —%sin(wl) , (N
()
with
w=(4)= kK(k) (8)

This approximation is valid for the asymptotic linear por-
tion of the McCumber curve, i.e., for > 3. The insertion
of Eq. (7) into Eq. (6a) yields, after a simple calculation,

F+la+Bbly + ,b’-J.(m-’)

+ 3 amcosimat) [y=0, (9
mai
where
[2ma¥, (@=?), m odd
A= — (10)

Un(@w=2), m even

and J,, is the Bessel function of first kind and mth order,
and J, denotes its derivative with respect to the argu-
ment.

Using the fact that the argument of all the Bessel func-
tions in Eq. (9) is 1/a? and that by assumpuon w>3, we
may approximate the Bessel functions as®

m4l

X X
Jo(x)= - . an
m(x) 2"m!  4X2™[(m + 1))

Using this approximation, Eq. (9) may be rewritten as

V+2euj+ (64 3 €"dpcosimr) iy = (12)
moei
where r=at, €=1/0?, u=(w/2)a+pbY),
L |yt et
=TT e

and overdots now denote derivatives with respect to .
The first few expansion coefficients are

o™t | ot 1 !
=] = —— 2 ——, dyjm——— (13}
d=1-=3= di=g === di=3-T3 g

ete.

Following Nayfeh and Mook’ we calculate the stability
boundaries of Eq. {12) by means of a Lindstedt-Poincarée
perturbation expansion in the parameter €. Retaining
terms up to second order, this calculation yields

2
1 1
bl= |2} 4 - —
2 2w} 8w*
+_I. 1_.._1_. z_ml(a+gb1) ln__.l__ ;__1_.",.
T2 8« 8w? 8wt |
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with b given by Eq. (6b). For given values of a, B3, /, and
n, Eq. (14) gives two values for , say @, and o _, which
are the stability boundaries of Eq. (12), provided that the
argument of the square root in Eq. (14) is positive, If this
argument is negative, no instability region exists for the
given parameter values. Using Eqs. (3} the voltage-
stability boundaries @, and w_ can be translated into the
corresponding current values, say ¥, and v _.

1. MULTIMODE THEORY

The linear-stability analysis presented in the preceding
section provides estimates of the stability boundaries of
the McCumber curve, but it cannot fumish the time evo-
lution of an unstable solution. In order to follow the evo-
lution of such an unstable solution, we consider a simple
extension of the mulitimode theory developed by Enpuku
et al.* The basic idea is to approximate solutions of Egs.
(1) in terms of a finite number of Fourier spatial modes
whose amplitudes are unknown functions of time. This
can be done with a reasonably small number of modes if
two conditions are satisfied: (i) the spatial extent of a sin-
gle fluxon is a sizable fraction of the length of the junc-
tion, and (ii) ¢ in Egs. (1) can be expressed in terms of
periodic, continuous, and smooth functions of x. Condi-
tion (i) will be satisfied if we limit attention to
intermediate-length junctions, i.c., those having 1</ <5.
Condition (ii) can easily be satisfied in the following way:
We first define a new function ¢’ in the double x interval
[=11]as :

#lx,t), 0Sx X!
l~x,1), —1£x250.

&'lx,t)= (15)

By construction ¢’ is an even, continuous, periodic func-
tion of period 2/; however, from Eq. (lb), its spatial
derivative is discontinuous at x=0 and x = +/ for n5£0.
Therefore, we split ¢’ into two parts, the first of which is
an explicit function that satisfies Eq. (1b) and the second
of which is now a smooth, even function, which, accord-

ingly, may be reasonably approximated by a finite sum of
low-order Fourier modes:

N
¢'lx.)=7m|x|+ 3 6(t)cos (16)

1-0

M]
3

Inserting Eq. (16) into Eqgs. (1), we get, using the ortho-
]

R .

S. PAGANO et al. 3

gonality properties of the cosine function together with
the fact that ¢’ is even,

. . l ] . N E_{.
9°+a8°=y—-l f‘_osm nx +l§)8,cos 7 dx ,

(17a)
Om +(a+Pal, )6y +0k, 6,

’ .
!
x-Osn

N ,
7 nx-i-zejcosjl—?-])
/=0

Xcos

E;r—x)dx. m=12...,¥

(17b)
with

wm=mwu/l. (17¢)

This system was integrated numerically using the stan-
dard predictor-corrector routine DGEAR;’ the spatial in-
tegrals were evaluated by means of the fast-Founer-
transform routine FFTSC (Ref. 9) using N function sam-
ples over the interval [0,/] (corresponding to 2N samples
over one spatial period of ¢’). The accuracy of the tem-
poral integration was checked by varying the local error
limit in DGEAR, and the influence of mode truncation by

varying N.

1V. APPROXIMATE ANALYSIS
OF MAGNETIC FIELD EFFECTS

The multimode theory presented in the preceding sec-
tion is valid for any value of the magnetic field 7. Here
we present an approximate treatment of this theory, valid
for. sufficiently small 7, which reduces the problem of
determining the effects of magnetic field to a simple ana-
lytic result similar to that presented in Sec. 1I. The ap-
proximation is based on assuming that the amplitudes of
the spatial modes in Egs. (17) are small, i.e.,

N
S 18] <« .
=

Using this approximation we can calculate explicitly the
integrals in Eqgs. (17), obtaining

{18)

. . N N

00+a80— = — [Co.o— E b/'QG, sinGo- [bo.o— Z c/'09/ COSeo , (1%a)
J=i ] =1
.. . N N
0m +(@+wn B0 +wh Ny =—=2 com= 3 b0, |sin6g=2 |bom— 3 ¢;mb) [cosby (19%)
with m =1,2,3,...,N. Here,
) 1 1 1 n

bom=7(l=(=1¥*"cos(n)] l, . . . -

’ nf+mj+mm  ngl+mj—am 9l —mj+mm  nl—nj—1rm

! ! ! l 12Ch

¢, m=1((=1¥*sin(nl)]

l +mj +mm

- + ,
nl+mj~mm nl—mj+mm

W —mj—mm
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v
-

[
0 2 § Snllo

FI1G. 1. Coefficients (a) b, and (b} ¢, of Egs. (20). Note
that b; 4 =bm; and ¢;pm =Cp ;.

In Fig. 1 we show the values of b, and ¢;, for

Jom =0,1.2 and Oéﬂlé 10.
Using again the approximation (18), together with the
ohscrvation from Fig. | that the coefficients &, and ¢; »
J

are never larger in magnitude than 1, we may further ap-
proximate Eq. (19a) as

8o+ aby— v = —cq 05inbg— bo o088, , 21N

which can be cast into the form

§'+a'8’'—y +sind' =0, (22a)
with
a =(c3,o+b§,o)'”=‘—i'%z-)- , (22b)
S=arctan(by o/co0)=1{/2, 22¢)
t'=a'?t, (22d)
a'=a~""a, (22¢)
Y'=a-ly, (220
0'()=6y(0)+ 6, (22g)

where overdots now denote derivatives with respect to ',
Equation (22a) has the same form as Eqs. (1) in the ab-
sence of spatial structure and in the absence of magnetic
field, i.e., it describes a McCumber solution and conse-
quently [eads to

0°=Zam[mm/k;k]—6 . 2la)
172 ’
pdoa TEK) (2361
rk
1
oy = 2— |
(B0} kK (k) (23c)

If we now assume that the solution of Egs. ({9) con-
tains only one dominant spatial mode, say the mth (which
is reasonable for a sufficiently short junction), Egs. (19b)
reduce to a single equation,

O +(@ + @230 + L, By = 25y, SO~ C .y €0500)0 py = —2(Co, mSinGg+ b, mCOSEy) 24)

which can be written as a Hill's equation with a forcing term

O + (@ +wh B)0, +[wh +2d cos(8g+ )]0, = — 20 sin(Gy+&) (25a)
hy defining
d=(ck  +b62 )" =1+sin ull 1 + ! +—= (25b)
ooomm e ! 2 n+2rm  nl=2mm gl |’ o
x/vsarctan(b,,,.,,/c,,,,,,)=ﬂ2-l- , {23c)
) ! ]
=l(c} I ) lagin |14 2 (25d)
pE(com+bom) R P IR Pr nl —mm + nl +mm
:=nrctan(bn.m/co‘,.)=-ﬂ+lP,,, . (2Se

2 2

with 7 =0,1 for m even,odd.

For small values of 7 it is reasonable to assume that the instability regions of Eq. (25a) are the same as those of the as-
wciated homogencous equation.'® Therefore, we restrict our attention to the homogeneous equation

Uy +la+wh B0, + |wl +2d cos 60+%1- 6m=0.

126i
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We may perform now the same procedure as used in the 7=0 case. As in that case, Eq. (26) may be cast into the form

of Eq. (12), where now

2

r=wl, €=1/w} p=(w/2Na+Pfw}), b=w=? [m,,,—

The first few expansion coefficients are now given by

1_wt

2 12

w—4

2d

1
,d,-2d[8—

R

3 16 ] . (27a)

(0-‘

128

(27b)

ctc. Performing the same Lindstedt-Poincaré perturbation expansion used before, we obtain the following instability

boundaries to second order in €:

2
d __1
8w

dZ
- 20

2 1-

) 4

2

ol =2 1
8w*

2

This expression assumes the form of Eq. (14) for 7=0.
For .0 but small it gives the dependence of the instabil-
ity boundaries on the magnetic field.

V. EXPERIMENTAL PROCEDURE

Sample preparation and experimental technique have
been described in previous publications.!! Several junc-
tions have been investigated, all Nb-Nb,O,-Pb overlap
Josephson tunnel junctions of intermediate normalized
length. The results reported here were obtained with a
representative sample (S6-7/4), a junction of length
L =397 um and width W=17.6 um. Geometrically, the
overlap of the junction was perfect to within 0.5 um, the
resolution of our optical microscope.

The substrate was mounted in a 1% 1-in.2 microstrip
box and thermally anchored to a copper block containing
two precision Ge thermometers and a small heating ele-
ment. All the 50-um-diam wires leading to the Josephson
junction, the thermometers, and the heating element were
bifitarly wound and carefully thermally anchored to the
copper hlock,

The microstrip box was included in a vacuum can im-
mersed in a liquid-helium glass cryostat. A low-loss {in-
side gold-plated) rectangular stainless-steel waveguide
connected the room-temperature X-band field-effect-
transistor (FET) microwave receiver to a sma transition
inside the vacuum can. The final part of the microwave
system was a 20-cm-long, all-Nb, 0.085-in. sma cable
leading to a sma-to-stripline transition in the microstrip
baox.

A wcak coupling to the microwave system was provid-
cd by an inverted microstrip antenna placed at a fixed dis-
tance of about 10 um from one end of the junction. The
distance to the ground plane (nonsuperconducting) could
he adjusted in situ by means of a cryogenic differential
SCrew.,

An extremely high stability of the three external bias
parameters—temperature T, current [y, and applied
magnetic field B,,qa—was essential and was verified by
mcasuring the frequency (~10 GHz) and linewidth (~5
kH7) of the radiation emitted by the junction when biased

:_

: 1
t(d?|1——
[ l 8wt

2 11

“-’z IR}
-2 (a+Ba}) 8)

[

on the first ZFS. Typical frequency-tuning rates of
Av/AT, Av/Al,, and Av/AB,,, were 0.1 MHz/mK, 2
MHz/uA, and 0.5 MHz/uT, respectively.

The temperature of the helium bath was regulated with
a manostat to within ~1 mK. A temperature stabiliza-
tion better than 10 uK at 2.1 < T <4.2 K could be main-
tained for minutes by adjusting the thermal time constant
of the microstrip box by regulating the exchange-gas pres-
sure in the vacuum can. All 50-um-diam wires were also
thermally anchored to the vacuum can.

The de-bias current was supplied either from a sweep-
able constant-current generator or from a current source
based on reference mercury cells. The current was [ed (o
the junction by a long, double 50-um-diam wire, bifilarly
wound transmission line, the hot end of which was ther-
mostatted in order to minimize the influence of thermo-
powers. The dc voltage across the junction was measured
using a similar transmission line. Both transmission lines
were drawn inside thin-walled brass capillaries.

Input noise of either capacitive or inductive origin to
the junction did not produce any observable frequency
madulation or linewidth broadening of the emitted radia-
tion. The noise of the dc amplifier used allowed us to
resolve voltage-step structures less than 100 nV on a fast
{10-ms response) XY recorder.

The external magnetic field was produced by a coil
wound onto the vacuum can and was applied in the plane
of the junction and perpendicular to its long side. The
magnetic shielding of the cryostat and the wires leading to
the coil was sufficient to prevent magnetic noise from in-
terfering with the measurements. This could be checked
by reading the linewidth of the emitted radiation when
biased alternatively in regions of the ZFS with
AV/AB.ppl =0or AV/AB.WH#O.

The critical-current density J, the Josephson penetra.
tion length A/, and the loss term a were determined from
the dc I-V characteristic (critical-current value, ZFS
asymptotic voltage, and the slope of the McCumber curve
at voltages corresponding to the ZFS studied) and from
direct measurement of the plasma-resonance frequency."
For the junction in question (sample $6-7/4i, /=262
A/cm?, Ayj=91 um, I =L/A;=44, and a=0.006 at 4.1
K.
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YI. RESULTS

Figure 2 shows a portion of an I- ¥ characteristic calcu-
lated numericaily from Eqs. (17) using the parameter
values a@=0.05, 8=0.02, /=2, and n=0. Both the
McCumber background curve (MCB) and the first zcro-
ficld step (ZFS1) are evident. The inset shows in more de-
tml the region where ZI'S1 joins the McCumber curve.
This region was calculated as {ollows: For n=0, the nu-
merical growth of an instability requires the imposition of
an inhomogeneous initial condition. Accordingly, for a
given ¥, a “pure” McCumber solution was launched and
allowed to stabilize for 100 normalized time units, after
which a small perturbation was added. In the instability
region, i.e, fory _ Sy Sy, orw_Swlw,, the perturba-
tion grows, causing the system to switch to ZFS1. Out-
side of the instability region the perturbation decays, and
the system relaxes back to the McCumber curve. For
n+0 there is a coupling between the McCumber solution
and the spatial modes through the boundary conditions,
Eq. (1b); this allows the instability to develop also in the
ahsence of an external perturbation.

Figure 3 shows the dynamics of switching in more de-
tal. In this figure, obtained using the parameter values
a=0.05, =002, {=2, =0, and y=0.16, a small per-
turbation has been added to the solution at a time prior to
t=500. Figure 3(a) shows the behavior of 6, in Egs. (17).
Note from Egs. (16) and (8) that {(4,)=(4¢,)=w. For
1 =500, we sce that @=3.20. Between =500 and 550, a
switching takes place, which, after a transient, settles into
a state having w=2.85. Figure 3(b) shows the correspond-
ing behavior of 0, (the larger-amplitude oscillation) and 8,
ithe smaller-amplitude oscillation) in Eqs. (17). From this
Mgure it is evident that the switching seen in Fig. 3(a) is
associated predominantly with an exponential growth of
the first-order Fourier spatial component. In a similar
wiy, Fig. Mc) shows the behavior of §;. Comparing Figs.
iy and Mc). we sce that the amplitudes of the Fourier
coefficients decrease rapidly with order number.

Using this numerical procedure, we find that the stabil-
ity boundaries associated with ZFS! for the parameter
values used are, expressed in terms of bias current,

I ZFS1 MC8
— »
06f 5 e
] -~
e
> ~ % ’/°/
t rd
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0 2 & 6 8 10 12
AVERAGE VOLTAGE <®l>
MG 20 1-¥ characteristic calculation from Egs. (17) using

r=0Ns 3-002, I=12, and n=0, showing the McCumber
Srckground curve (MCDB)Y and the first zero-field step (ZFSI).
et shews detail of region where ZFS1 joins the MCB.
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FIG. 3. Dynamics of switching {rom McCumber curve (o
ZFS]1 calculated from Eqs. (17) by adding a small perturbation
to the solution before r=500, in terms of Fourier coefficients:
(a) 8¢, (b) 6, (larger-amplitude oscillation) and 6, (smaller-
amplitude oscillation), and (c) 8,.

y,.=0.1712+£0.0005 and y_=0.1401+0.000!. Inserung
the same parameter values, together with n=1 in Eq. (6b),
into Eq. (14) and (3), yields ¥, =0.1711 and y_ =0.1404,
Considering that this instability region occurs at the very
lower end of the asymptotic linear region in the
McCumber curve, for which the analysis of Sec. I was
developed, the agreement is more than satisfactory.

Figure 4 shows the stability boundaries, now expressed
in terms of average voltage, calculated from Eq. (14) with
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FIG. 4. Instability regions (shaded) in average voltage (¢,)
calculated from Eq. (14) for ZFS1, ZFS2, and ZFS3 for dif-
ferent [-loss values using a=0.05 and /=2. Dotted line corre-
sponds to 3=0.02 used in multimode theory.

a=0.05 and /=2, for different values of B. The dotted
line corresponds to the value 8=0.02 used above. For
these parameter values there is only one instability region
in the McCumber curve; however, by lowering f it is pos-
sible to have as many as six such regions (the three lowest
of which are shown in Fig. 4). This result helps to clarify
a long-standing experimental question, i.e,, what deter-
mines the number of ZFS's that may be observed in the
1-V characteristic of a given junction?

This situation is illustrated in more detail for ZFS! in
Fig. 5(a) and for ZFS2 in Fig. 5(b). In these figures the
solid curves are calculated from Eq. (28) and translated
into bias current through Egs. (3) (this is done to facilitate
comparisons with the numerical results, in which ¥ is a
direct control parameter). The curves labeled 1 corre-
sponds to 7=0 and those labeled 2 to 7=0.8. As is evi-
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FIG 5. Stability boundaries in current y as a function of g
loss calculated from Eq. (28) and Egs. (3) for (a) ZFS! and (b)
ZFS2, for n=0 (curves 1} and n=0.8 (curves 2) using a=0.05
and /=2. Squares and circles in (a) are calculated from Egs.
117) for n=0 and 0.8, respectively.

L —

dent from Fig. §, the main effect of & (small) magnetic
field is to reduce the width of the instability regions. The
points indicated by squares and circles in Fig. 5(a) are cal-
culated from Eqs. (17); the squares correspond to =0
and the circles to 7=0.8. The error bar on the lower cir-
cle reflects the fact that for 750 both the ZFS states and
the McCumber states contain significant amounts of
Fourier components, thus rendering a clear distinction be-
tween the two states somewhat difficult at the lower end
of an instability region. This distinction is much sharper
for the other multimode points in Fig. 5(a), and the rela-
tive error bars are contained within the dimensions of the
symbols.

The dynamic state into which the system evolves after
the switching shown in Fig. 3 is the fluxon oscillation
state associated with ZFS1. This fact may be clearly es-
tablished by comparing the results of the multimode
theory, Egs. (17), with those of the direct simulation solu-
tion of Eqgs. (1) reported in Ref. 13. Figure 6 shows such
a comparison. In this figure, the solid curve is the func-
tion ¢,(0,¢), which is the voltage at the x=0 end of the
junction, as obtained by direct simulation. The arrival of
fluxons at the junction end is clearly apparent. The
dashed curve is the same function as reconstructed from
Eq. (16) using N=3. The bias value used in Fig. 6 is
¥=0.60, i.c., near the top of ZFS1. For smaller values of
y the agreement is even better, and the two curves are
practically indistinguishable.

Figure 7(a) shows a portion of the I-V characteristic of
the experimental sample $6-7/4 measured at a tempera-
ture somewhat beiow the transition temperature of the
lead counterelectrode and in zero magnetic field. The
dashed arrows indicate switching from the zero-voltage
current and from the first two ZFS's to the gap state.
Figure 7(b) is the same characteristic with a 10X magnifi-
cation of the current scale. The dotted lines in Fig. 7 indi-
cate switching from higher-voltage to lower-voltage states.
Clearly evident in Fig. 7(b) is a switching from the bottom
of ZFS1 to the zero-voltage state. This may be due to a
direct instability of the ZFS's toward the zero-voltage
state'* rather than being connected with an instability of
the McCumber curve; such a mechanism is not contained
in our present model.

12—

0 —

Voltage 3y(0,t)/3t
»
|

-—

1
0 3 Time 1 0

FIG. 6. Time evolution of voltage at x=0 junction end as ob-
tained by direct numerical simulation of Eqgs. (1) (solid curve)
and as reconstructed from Eq. (16) using ¥=13 (dashed curve)
for parameter values a=005, £=002, /=2, n=0, and
y =0.60.
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FIG. 7. (a) Detail of the [-¥ characteristic of experimental
sample $6-7/4 measured at a temperature slightly below the
transition temperature of the lead counterelectrode and in zero
magnetic {ield. Arrows indicate switching to the gap state. (b)
Same characteristic with 10X -magnified current scale. Dotted
lines indicate switching from higher-voltage to lower-voltage
states.

The characteristics shown in Fig. 7 correspond to a nor-
malized junction length of about /=132 and an a-loss
term, estimated from the slope of the McCumber curve,
of about @=0.03. The experimental determination of the
B-loss term is subject to rather large uncertainties, and so
we have treated 3 as an adjustable parameter in what fol-
lows. An essential {eature of the experimental procedure
is that the parameter values for a given junction can be
“tuncd™ experimentally by varying the operating tempera-
ture.

Figure 8(a) shows a comparison between the experimen-
tally determined stability boundaries (circles) in a magnet-
1c ficld associated with ZFS] and those obtained from Eq.
(28}, shown as solid lines. Experimental values of voltage
and magnctic ficld were translated into normalized terms
using the formulas (§,)=V/®of, and n=2md./ P,
where V is the physical voltage, @y is the magnetic flux
gunantum, &, is the applied magnetic flux threading the
junction, and f, is the plasma frequency.'? The experi-
mental data were taken at a temperature for which
a=0.026 and /=3.16, and these same parameter values
were used in Eq. (28). The B value used in Eq. (28) was
varicd between 0 and 0.07; the effect of this vanation is
indicated by the slight thickening of the curves in Fig.
R(a). The agreement between the experimental and
theoretical values for w, is reasonable. The large
discrepancy for the w_ branch may be due either to the
fact that here w lies considerably below the lower limit of
the asymptotic lincar region of the McCumber curve
vor= 3, or to the fact that a switching mechanism not
Jdescribed by the model is involved, as mentioned above.

Figure Stb) shows a similar comparison for ZFS2, using
the <ame paramecter values (same temperature) as in Fig.
<1 The /3 value used in Eq. (28) was varied between 0

<0‘>
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FIG. 8. Stability boundaries in average voltage (4,) as a
function of magnetic field n measured experimentally (circles)
and calculated from Eq. (28) (solid curves) for (a) ZFS! and (b)
ZFS2, Fixed parameter values: a=0.026 and /=3.16.
0£8%0.07 in (a) and 0S5 50.05 in (), giving rise to the shad-
ed regions between the solid curves.

and 0.05; the effect of this variation is indicated by the
shaded regions in Fig. 8(b). The agreement obtained here
for the behavior of the w_ branch is much better than
that of Fig. 8(a). The reason for this fact may be that
there is no direct switching from ZFS2 to the zero-voltage
state as there is for ZFS1, as can be seen in Fig. 7(b), or
that herew_> 3.

Figure 9 shows a similar result for ZFS1 at a higher
temperature, for which a=0.043 and [=2.56, and for 2
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FIG. 9. Stability boundaries in average voltage (&,) as a
function of magnetic field n measured expenmentally fcircles:
and calculated from Eq. (28) (solid curves) for ZFS! using fized
parameter values @=0.043 and /=2.56. f in Eq. (28) 15 vaned
in the range 0S£650.07, giving rise to the shaded regions be-
tween the solid curves. Triangles indicate experimental stability
boundary w* of the stable piece of the McCumber curve that ap-
pears below the bottom of ZFS1.
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larger range of magnetic field. As before, circles are ex-
perimental points and solid lines are calculated from Eq.
(28). Also, as before, the shaded regions between the solid
curves represent the effect of varying B between O and
0.07. Two new phenomena are represented in Fig. 9. The
first 1s that at a field value of about 7=0.8, there is an
abrupt change in the behavior of the experimental w,
branch. Physically, this corresponds to the disappear-
ances of ZFS1 with increasing field and the growth of the
second Fiske step (FS2) at approximately the same volt-
age '* The perturbation theory result derived in Sec. IV is
approximately valid only for sufficiently small values of
n; 1t cannot be expected to hold for larger field values.
The second new experimental phenomenon is the appcar-
ance of a stable portion of the McCumber curve below the
bottom of ZFS1 at this temperature. In Fig. 9 the lower
curve indicated by circles is, as before, the bottom of
ZFS1, and the curve indicated by triangles is the lower
stability boundary (w®) of this new piece of stable
McCumber curve.

We note from Figs. 8 and 9 that the experimental sta-
bility boundaries are systematically higher than the corre-
sponding theoretical ones. The reason for this might be
that the asymptotic voltage of the ZFS's corresponds to
normalized limiting velocities of the fluxons less than 1,
as discussed by Schecuermann and Chi.'® This would lead
to a calculated value of the normalized length [ larger
than the real value and, correspondingly, to a shift of the
theoretical voltage positions on the normalized voltage
scale to lower values since, in normalized terms,
1{,) =27 for ZFSI.

VII. CONCLUSIONS

A linear-stability analysis of the perturbed sine-Gordon
equation which describes the dynamics of Josephson tun-
ne) junctions indicates that the mechanism that deter-
mines the experimental observation of ZFS's may be

described in terms of the growth of parametrically excited
instabilities of the McCumber curve. This analysis gives
good agreement with both numerical and experimental re-
sults in the asymptotic linear region of the McCumber

" curve and for sufficiently small values of the applied mag-

netic field. It would be useful to extend the analysis to
the region of the McCumber curve below the asymptotic
linear region in order to be able to study low-order steps
in longer junctions.

Numerical integration of the multimode equations veri-
fies that the parametrically excited instabilities evolve into
fluxon oscillations. The multimode approach is a useful
alternative to the direct numerical simulation of Egs. (1)
inasmuch as it gives reasonably reliable results at a con-
siderably reduced computing cost. It should be remem-
bered, however, that truncated mode expansions can be
expected to give reliable results only when the dynamic
states in question are reasonably smooth. Here, as else-
where, the study of phenomena such as subharmonic gen-
eration and chaos will presumably require the use of dif-
ferent tools.
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STABILITY OF DYNAMIC STATES IN JOSEPHSON JUNCTIONS

Peter L. CHRISTIANSEN

Luboratory of Applied Mathematical Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark

Instabilities of dynamic states in linear Josephson junctions modelled by the perturbed sine-Gordon equation are
investigated experimentally, computationally, and by stability theory. The narrow line-width of the clectromagnctic radiation
from the circular Josephson oscillator is determined computationally and by perturbation theory.

1. Introduction

The present paper describes recent results con-
cerning instability of dynamic states in the linear
overlap Josephson junction obtained in ref. 1 and
line width of the electromagnetic radiation from
the circular Josephson oscillator obtained in refs.
2-3.

In both cases the Josephson oscillator is mod-
clled by the perturbed sine-Gordon equation [4)

U i sing = a¢l—B¢xxl—Y (1)

in normalized units. Here, ¢(x,t) is the usual
Josephson phase variable, x is the distance along
the junction, and ¢ is time. The term in « repre-
sents shunt loss due to quasiparticles crossing the
junction, the term in 8 represents series loss due
10 surface resistance of the superconducting films,
and v is the uniform bias current. For the linear
oscillator we apply inhomogeneous Neumann
boundary conditions

$.(0.0) =0, (/1) =, (2a)

where | is the length of the junction, and 7 is the
external magnetic field. In the circular oscillator
periodic boundary conditions

.(0, ) =¢,(1,1),

$,(0,¢) =9,(1,1), (2b)

! being the circumference of the oscillator, are
used. The detailed choice of initial conditions in
the numerical solutions of (1)-(2) is described in
(1-2].

2. The linear Josephson oscillator

Fig. 1 shows a portion of an /-V characteristic
obtained as the relationship between bias current,
v, and resulting average voltage on the junction,
(¢,(0, t)), by computational integration of egs. (1)
and (2a). For intermediate-length (/ < 5) Joseph-
son junction we use an extension of the multimode
theory developed by Enpuku et al. [S], which
amounts to an expansion of the solutions of the
perturbed sine-Gordon equation in a truncated
series of time-dependent Fourier spatial compo-
nents. This approach provides very accurate re-
sults at a lower computational cost than direct
numerical solution of the mathematical model {6}.
In fig. 1 we observe an instability for y_ <y <y,
of w_<{¢,)<w,. In this region the dynamic
state without spatial structure, ¢ =¢(r), which
corresponds to the McCumber branch (MCB) in
the /-V characteristic, becomes unstable (to smal)
perturbations). As a result a switching occurs (0 a
dynamic state with a spatial one-soliton structure
which corresponds to the first zcro-field step
(ZFS 1) in the I-V characteristic. The transition
which may involve creation of breather-modes (7]

0167-2789,/86 /303.50 © Elsevier Science Publishers B.V.
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¥ig. 1 I-V charactenistic calculation from cgs. (1) and (2a)
using a=005 g=002, /=2, and =0, showing the
McCumber background curve (MCB) and the first zero-field
step (ZFS 1). Inset shows in detail how ZFS 1 joins MCB.

will be an interesting object to study by means of
spectral methods.

Fig. 2 illustrates the corresponding experimental
findings both at the first and second zero-field
steps (ZFS 1 and ZFS 2). In the two cases one and
two solitons respectively are travelling back and
forth on the oscillator in different configurations
(8],

A stability analysis is carried out for =0
using

olv.r)=oy(1) +(x.1). (3)

Here ¢,(1) is the McCumber solution in the
power-halance approximation [9]

ool t) =2am(t/k: k], (3a)

where am is the Jacobian elliptic function of mod-
ulus A. and k satisfies

=dalb(k)/mk, (3b)

L (k) being the complete elliptic integral of second
kind. The small perturbation ¢(x, 1) is given by

v r)=ylt)exp(ibx) (3¢c)

with h=nr/0, n=0.1,2,.... Insertion into egs.
(11 and (2a) vields the damped Hill's equation

vr(a+ Bh?)y+ {b+cosey(t)}y=0. (4)
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Fig. 2. (a) Detail of the /- ¥ characteristic of Nb-Nb,0,-Pb
overlap junction (experimental sample 56-7/4 with /= 4.4 and
a=0.006 at 42 K) measured at a temperature slightly below
the transition temperature of the lead counter clectrode and in
zero magnetic ficld. Arrows indicate switching to gap state. (b)
Same characteristic with 10 X -magnified current scale. Dotted
lines indicate switching from higher-voltage to lower-voltage
states.

where overdots denote differentiation with respect
to . For small k’s the stability boundaries for the
average voltage, w, and w_, are determined ap-
proximately as solutions to the equations
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Fig 3 Stability boundarics for ZFS 1 in average voltage (¢,)
av a function of magnetic field n measured experimentaily
arciesy and calculated from approximative equations for sta-
hiity boundaries (solid curves). Parameter values: a = 0.026,
t=316 and 0 < B <0.07.

For small values of 7 (#0) the stability
boundaries have been determined approximately
by a generalization of the method leading to more
complex equations than (5). Parmentier [10] has
reduced the damped Hill's equation (4) to a Lamé
equation for which exact stability boundaries are
given,

Fig. 3 shows a comparison between the experi-
mentally determined stability boundaries (circles)
in 2 magnetic field associated with ZFS 1 and
those obtained from approximative equations for
stability boundaries (eq. (5) and its generalization
for p#0), shown as solid curves. The effect of
varving 3 is indicated by the slight thickening of
the curves. The instability region becomes smaller
as B and n are increased. The agreement between
experimental and theoretical values for w, is rea-
sonable. The discrepancy for the w_ branch may
he due to the fact that the approximations used in
the theoretical expression are poorer for low val-
ues of the average voltage.

In fig. 1 the numerical procedure predicts vy, =
91712 and y.=0.1401, while eq. (5) leads to
v =01711 and and y_ = 0.1404. Thus, the agree-

ment between the computational results and the
rewlts obtained by stability thenry is very good.

3. The circular Josephson oscillator

So far, we have focussed on the instabilities of
the dynamic states on the linear oscillator. In this
section we shall demonstrate the extraordinary
stability of the dynamic state in which one soliton
rotates on the circular junction. Thermal noise or
external microwave radiation is unable to perturb
the soliton velocity much from the power-balance
velocity predicted by perturbation theory [11]. As
a result the electromagnetic radiation emitted by
the oscillator has a very well-defined frequency.
Experimentally, a line-width of less than 5 kHz at
a resonance frequency of 10 GHz has been found.
A relative accuracy of about 1072 is therefore
required for computational line-width determina-
tions. We have performed simulations of egs. (1)
and (2b) with this degree of accuracy on a CRAY-
1-S vector processor. In the case of microwave
radiation, y in eq. (1) was replaced by

Y=Yy + Yac sin (2¢), (1a)

where v, is a constant, and y,. and £ are ampli-
tude and frequency of the microwave.

1.1 fig. 4 the solid curve is the resulting computa-
tional determination of the line-width as the
standard deviation of the electromagnetic radia-
tion frequency, o, versus microwave frequency, .

A perturbation theory using

$(x, 1) =¢*(x,t) + (1), (6)

where ¢*(x, 1) is the travelling soliton and ¢(r) is
a small background, leads to the ordinary differen-
tial equation for ¢(1)

—$ — Sing = ad + Yy + Yoo 510 (21) (7)

as well as a determination of the soliton velocity
u(t). The soliton revolution time, 7, (and the
corresponding frequency, f, = 1/T,) has first been
determined from the equation

ZT"j”T'u(r)d:=2n, (8a)
{
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Fig. 4. Standard deviation of electromagnetic radiation fre-
quency, oy, versus microwave frequency 2. Parameters in cgs.
(1). (1a) and (2b): a =001, B =0, y,. =002, y,. = 0.0l and
{ = 8. Solid curve: computational result. Dashed-dotted curve:
perturbative result from eq. (8a). Dotted curve: perturbative
result from eq (8b) using linearized version of eq. (7). Dashed
curve: perturbative result from eq. (8b) using full eq. (7).
Dotted and dashed curves overlap away {rom resonance re-
gion

which yields the dashed-dotted curve in fig. 4 in
poor agreement with the solid curve. Realizing
that the main contribution to the line-width stems
from the background radiation, #(¢), and not
from perturbations of the soliton velocity, u(?),
we replace eq. (8a) by

T Tu() e+ e+ T) = §(1) =27 (80)

and find the dotted curve, when a linearized ver-
sion of eq. (7) is used. The hysteresis phenomenon
is recovered (dashed curve in fig. 4), when the full
eq. (7) is used. The level of the line-width is now
predicted correctly by the perturbation theory
while the location of the maximum is still predic-
ted at a slightly too high frequency.

4. Conclusion

The results presented in this paper demonstrate
that the Josephson junction in combination with

the sine-Gordon model is an excellent testing
ground for nonlinear phenomena in the sense that
computational results and theoretical predictions
can be verified by comparison with experimental
measurements. In this paper we have only consid-
ered soliton dynamic states and their instabilities.
Chaotic phenomena also occur on the Josephson
junction. To predict these theoretically, Melnikov -
Arnold techniques which apply to low-dimen-
sional systems (see e.g. [12]) must be generahzed
to many-dimensional systems.
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For the driven, damped space-independent double sine-Gordon equation threshold curves for horseshoe chaos of the
Smale type are derived by the Melnikov technique. Dillerent qualitative behaviour of the solutions is found in diflerent
regions of parameter space.

{. Introduction

During the past years a great deal of interest has been devoted to the study of the motion of simple
nonlinear oscillators in the presence of dissipation and periodic forcing terms (see[1, 2], e.8., and references
therein).

In particular the dynamics of a single classical particle moving in a sinusoidal potential under the
influence of damping and bias was extensively studied owing to its relevance for specific physical systems
such as for example Josephson junctions. Numerical tools such as Poincaré sections, Liapunov exponents,
power spectra analysis, etc. (1] and analytical ones, e.g. the Melnikov-Arnold technique {1] were used
to characterize the great variety of responses of the system (as a parameter is varied in the equations),
ranging from multiperiodic motion to a fully chaotic one.

In view of more general applications in solid state matter, it is of interest to extend the above studics
1o the case in which the potential is periodic but not sinusoidal. A first step in this direction is to consider
single particles moving in potentials which are the superposition of two sinusoidal potentials of the types
A(1-cos ¢) and Ay(1=cos($/2)) respectively under the influence ?f‘ loss and bias. This leads to the
study of the following equation:

¢ ==A sin ¢ ~{A;sinip +e[A cos(wt) ~ag,]. (1)

When € =0, (1) is recognized as the (space-independent) double sine-Gordon equation, which is known
to play an important role in condensed matter physics [3, 4] (for a mechanical analog of it, see [5]). The
e-term in (1) represents a generic structural perturbation consisting of a loss term (a¢,) and a time-
dependent periadic bias, present in physical systems with driving forces. As a result of such perturbation,

0165-2125/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)
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the integrability of (1) (i.e. when g =0) is broken. For particular values of A, a, , this gives rise to the
appearance of the so-called ‘Smale horseshoe’ [1] in the Poincaré map of (1). The aim of the present
paper is to analytically investigate the dynamical behaviour of system (1). More precisely, by using the
Melnikov-Arnold technique with given values of A, A, in (1) we will determine values of the parameters
A, w, a, for which horseshoe-chaos is predicted. To this end we first briefly recall in the next section the
Melnikov-Arnold technique. Then, in Section 3, we study the phase portraits of the unperturbed equation
(1) (¢ =0),as A, Ay are varied in the range (—0, +o0). Finally, in Section 4, we apply the Melnikov-Arnold
method to (1) and derive for different cases (corresponding to different values of A,, A,) parameter values
of A, a, w, for which chaos is predicted. The last section contains a discussion of the main results of the

paper.

2. Meinikov’s function

We start by briefly recalling the main ideas behind Melnikov's method (a full treatment is found in [1]).
We consider a system of two ordinary differential equations of the form

d¢/d‘=fo(¢-}')+€f|(¢s}’. €, ‘)- d}'/d'=go(¢.Y)+€81(¢v)'. 8, ‘) (2)
or, in short notation,
dX/dt=ho(X)+eh,(X, 1, ¢) (3)

where X = (¢, y), ho=(fo, 80), and k, =(f;, 8;). For system (2} the following conditions are assumed to
be satisfied:

(a) When & =0, the system has an equilibrium point of the centre type at some point (¢y, )'o), Which
for stimplicity we assume to be simple.

(b) The functions fo(¢, y) and go( ¢, y) are analytical in ¢ and y in a sufficiently large neighbourhood
of the point (¢, yo).

(c) The functions f,(, y, ¢, t) and g,(&, y, ¢, () are analytical in (¢, y) in a sufficiently large neighbour-
hood of (¢, y) and for all |e| < g,. They are continuous and periodic in ¢ with period 2.

(d) For e =0, system (2) possesses a homoclinic orbit, which we denote by

X(1)=(g(1), y(1)), (4)

to a hyperbolic saddle point X, =(4¢,, y,). Observe that these conditions are all satisfied for our system
(1). In what follows we also coasider the case in which the unperturbed system has heteroclinic cycles
connecting several saddle points.

With the assumptions (a)-(d) it can be shown [1] that for € small enough the saddle equilibrium point
X, =(¢,, y,) gets perturbed to a saddle fix point X, =(¢,, y,) of the Poincaré map for (2).

In addition, the perturbed homoclinic orbit splits up into a stable orbit denoted by X (1, t,) defined in
the interval 1,< t <0, and an unstable orbit X;(1, t,) defined in the interval ~c0 < 1 < (. With 1, denoting

the initial time the following results apply [6]:

te(to,of, p=s

‘E]-wl '0]9 p=u (5)

X201, 1) = X(t = 1)+ X2t 0) + O(e?) {

and
dX7(1, to)/dt = D, ho[ X (1~ 1)) X{(¢, to) + b [ X (1—1y), 1] (6)
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where the index p may assume the values u (unstable orbit) and s (stable orbit), and D, denotes the
partial derivative with respect to x. Note that the initial time, t,, appears explicitly, since solutions of the
perturbed system are not invariant under arbitrary time translations ((2) is in general non-autunomous
for £ #0).

To first order, the separation between X¥(/o, t,) and X3 (1o, to) is found by taking the scalar product
between (X" - X*) and a unit vector transverse to ho( X (1,)). In short notation, this separation, d{(,), may

be expressed as

_ ER{ X(0)] A [ X 7(ty, fo) = X3 (1o, 1:)] +O(e?)
lh X (0)]] '

Here the wedge product is defined by XA Y =X,Y,- X,Y,, and ho A[X?—-X}] is the projection of
[X!-X}) into h,.

The so-called Melnikov function is proportional to the distance d(t,) between the stable and unstable
manifolds in the Poincaré map at 1,, and its expression (valid on long time scale), is given by (for details,
see [1])

d(ty) (7

M (1) =J R X(t=1)1A B[ X(1=15), 1] exp{-—J o Trace D,k X(s)] ds} de. (8)

[

If M(1,) has a simple zero independent of ¢, and if dM/dt# 0 at t = ¢, is satisfied, then the local stable
and unstable manifolds intersect transversely. Such transverse intersection implies infinitely many others,
this giving rise (in the Poincaré map) to the appearance of a fractal invariant hyperbolic set called the
Smale horseshoe [1]. A Smale horsehoe is structurally stable and contains a countable set of unstable
periodic orbits, an uncountable set of bounded nonperiodic orbits, and a dense orbit.

[n the {ollowing we will use the existence of 2 Smale horseshoe (i.e. M(1)=0,dM/dt#0at 1=1,) as
a criterion of the onset of chaas.

3. Phase space analysis

Before applying the Melnikov method to equation (1) it is of interest to study how the phase space
portraits of the unperturbed equation (here written as a first order system)
b=y, y=-A;sind~A;sinie (9)
change when Ay, A, are varied in the range (—o0, +00). To this end we first observe that (9) is a Hamiltonian
system with the Hamiltonian given by
H(¢,y) =1y’ +A,(1-cos ¢)+A,[1-cos {¢]. (10)

Because of the periodicity of (10) we can restrict ourselves to the range of =27 < ¢ < 2. Furthermore,
we note that the general case A, A; € (~, +®) in (9) can always be reduced to the case in which (A =1
and A,€ (0, +) by shifting ¢ » ¢ + 2w (in order to change sign to A,), and by rescaling time (in order
to normalize A,). Without loss of generality we shall therefore concentrate on the cylindrical phase space
(-2n= ¢ = 2n) of system (9) in the cases

(u) Al=—lv Ang.

(b) A|=l, A=A,
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In cases A, = -1 and A >0 one casily finds that when 0 <A <4 the system (2) has fixed points of centre
type at

(¢.y)=m[£2cos™'(iA) +4km, 0], k=0,x1,%2,.
and fixed points of saddle type at
(¢, )= (2nw,0), n=0,=£1,x2,....

The level set H(¢, y) =0 is composed of iwo homoclinic orbits based at

(,y)m [ﬂ tg"(\/fz—A).o].

We shall denote these two homoclinic orbits by (¢%,, 72,). They are given by the following analytical
expression (see Fig. 1(a)):

Jf,(!)=:4tg"[\/§%scch(\/4—‘_‘il)],
(11)
F2/A(4- A)sech[\/—;ﬁz]{tgh (\/ ]}
A+(4—A)sech’(\/—k)

Besides, two heteroclinic orbits (%, %) exist from (=2, 0) at £ =~ to (2m,0) at r =+, which
have the following analytical expressions (see Fig. 1(a)):

é:,(1)= :t4tg"[\’4:’\ sinh(\/l+%)\l)],

£2J/A(4+A) cosh[(V1+ia)1)
4+ A+ sinh?[(VI+iA))

yan=

(12)

ﬁ:|(1)=

When A, = -1 and A, = A =4 the system (9) has fixed points of centre type at
(6,y)=m(dm=,0), m=0,£1,£2,...,
and fixed points of saddle type at
(6, y)m((414+2)m, 0], 1=0,=1,+2,...
Further, the level set

H(s,y)=2A

is composed of two heteroclinic orbits ($*,, 7*,) based at (¢, y) = (2w, 0) having the same analytical
expressions as in (12). We note that in this case the homoclinic orbit (11) disappears (see Fig. 1(b)).

Now we shall analyze the case when A; =1 and A, = A >0. One finds that for 0 <A <4 system (9) has
fixed points of centre type at

(&, y)=(2nm,0), n=0,%£1,%2,...
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and lixed points of saddle type at
(6. y)=[2n+2cos”'(=jA)+4nm, 0], n=0, %], %2,....

The level set H(¢, y) =(A?+8A+16)/8 is composed of two heteroclinic orbits based at

(¢, y)={2w+2cos”'(~-r), 0]

We shall denote these two heteroclinic orbits by (&7, 75). They are given by the following analytical
expressions (see Fig. 2):

= 4~ 16-A?
SRS Oy W ETLA
$i(i)==d41g | 4+/\tgh( 3 1)] 2m,
/16 A? (13)
\ (16=2%) sech’( l)
St 64
)= 3 .
2[4+A+(4—/\)t h’(\/w_'\ :):,
& 64
Furthermore, two heteroclinic orbits exist based at
(¢, y)=([x2wF2cos™'(-}1r),0]
(®.1.y.1)

(2) (b)

Fig. 1. Phase space diagram for the Hamiltonian (10). (a) Phase space diagram when A, = ~1, 0< A <4, (b) Phase space diagram
when A= ~1, A >4,

Y (650

/

\/\/"\/45;'7\‘)
0 < @
«—2{\_ /\2{

Fig. 2. Heteroclinic orbits (13) and (14).
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having the following analytical expressions (see Fig. 2):

( 3
d>,’(l)=:t4tg"[\/:t:lgh(ﬁ68 A l)]
J16—A")

8
— z )
2[4— A+(442A) tgh’(Jl68 A :)]

If Ay=1and A;= A >4, system (9) has fixed points of centre type at
(¢, y)=(4In,0), [=0,%],%2,...

(14)
(16-A%) sech’(

Ailn==%

\

and fixed points of saddle type at
(¢, y)=[(41+2)m,0], I=0,+1,%2,....

The level set H(4, y)=2A is composed of two heteroclinic orbits based at (@, y) = (+2mw,0) with
analytical expressions given by (the phase space in this case looks like Fig. 1(b))

5.‘(!)=:&4tg"[‘/Ai4si.‘lh( A—;—‘!l>].

ﬁ 2VA(A —-4) cosh( A———41)

(== n

(A~4)+2A sinh’(\/é—}it)

4. Melnikov's method for the double sine-Gordon system

(15)

In this section we shall apply Melnikov’s method to system (1) in the various cases analyzed in the
previous section.
We start with the case A, = —1,0< A <4, Using the homoclinic orbits (11), the Melnikov function reads.

 +00

M*(tg, A, A, w,a)= Fo (D[ A cos(wt + wip) — apt,(1)] de

o —a0

( Imzﬁu-nscch[\/%—*n] tgh[\/“—;—*:]
¥
- A+(4-A)sech’(\/4—;—)‘-l)
o 2\/7\'(4—A)sech[\/1;—)\r] tgh[\/"—;—'\r]
~a | a e
) A"f(4“)\)SCCh2(\/4_};—A’1)

[A cos(wr+ wiy)] di

2
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Making the cosine term explicit and observing that fI2 y2.(1) cos(wt) dt = 0, because it is the integral
of an odd function, we get

M*(tg, A, A, w, @) = AR_,(A, w) sin(wto) — aF_,(A), (17)

where
- - 2
+o 2~/X(4—A)sech[\,9—4ig] lgh[ ;4.1\.,]
F-—I(A)=J dt
- A+(4-A)sech’(,/4—%i,)
and
*°2/X(4—A)sech[\/i¥;] tgh[1 /4_;'5,]
R, w)=,[ sin(wt) dt.
- A+(4—A)sechz(\/-4—‘_—‘—)‘-1)_

From (17) one sees that a necessary condition for M* to have a zero is

aF_,(A)
AR’-I(Av ll))

If the inequality (18) is strictly satisfied for all frequencies w, then the Melnikov function (16) has a
simple zero. When (18) becomes an equality, the zero of M* is nontransverse and this corresponds to

the so-called tangential intersection (dM*/dt =0 at 1 =1,).
The frequencies that will correspond to this case are

=<1 (18)

+
w=EEXDT s 52,. (19)
24,
where I, is the value of f; for which (17) becomes zero.
Then, if (18) is satisfied and

w#Qﬁi.‘l', k=0,+1,£2,... (20)
20,
we have that system (9) has in its dynamics the so-called Smale horseshoe chaos.
From relation (18) we can also obtain the threshold curve for getting a Smale horseshoe in the parameter
space (w, a, A). If we fix one of these parameters and we consider the other two as functions of each
other we can obtain different threshold curves. For example, fixing A we have the following threshold

curve in the (w, a) parameter space:
_ AR--|(A, W)

Fa() '’

This curve (see Fig. 3) represents the bifurcation diagram under which system (1) has in its dynamics

a specific kind of chaos (Smale horseshoe). In Figs. 3-6 the shaded regions correspond to negative value
of a, and curves for —a are shown. In the parameter regions below the a-curve horseshoe chaos occurs.

A>0fixed, 0<A <4. (21)
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a * =0.001 a [ Az 10
0.30 ¥
o5 |
ow . L
3 0 3
(b) w
o xo35] %200 x=399
20 | ]
100 |
1o f
005 . 2 3 % ' 3
(c) w (d) w

Fig. 3. Bifurcation curves for the homoclinic orbits (11) in the (a, ) parametr space. A=0.5, A, =~1. (a) A =0.001; (b) A =1.0;
(¢) A =1.5; (d) A =3.99. Shaded regions: —a is shown.

The same analysis can be carried out for the heteroclinic orbits (- 1» ¥-1) in Fig. 1(a), this giving a
threshold curve in the (a, w) parameter space characterized by

AR_,(A, w)

as_?-:h_')‘_' A>0fixed,0< A <4, o
where
R\ w)= J“”N-(d“)°°Shw'_+—’—'lcos(m)
4+ A+ sinh’[V1+{a1)
and

£ (A)=J”°°{2\/-(4+A)cosh[\/l+ u]}
- 4+A+Asinh’[V1+iA1)

The threshold curve given by (22) is shown in Fig. 4 (the upper region delimited by the curve represents

the chaotic region).
When A, =-1 and A >4 we find that the bifurcation diagram for the orbit (¢.,, ¥.,) in Fig. 1(b) is
equivalent to that of the orbit (¢, §.,) and therefore it is given by the same curve (22) (the only difference

is that now A > 4) (see Fig. §).
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a 0.4 » =0.001 a 03 A=z10
02
02+ -r
01

0.0 1 1 AL
0 1 2 3
(b) “
a20 A=399

(a0

Fig. 4. Bifurcation curves (or the heteroclinic orbit (12) in the (@, w) parameter space. A=0.5, A, =—1.(a) A =0.001; (b) A =1.0;
(c) A =3.5; (d) A =3.99. Shaded regions: —~a is shown,

a 02 A=401] a 015 =50
0.10
ot} I
- 0.05
00 ) T § 1 1 i L Il L i,
0 1 2 3 1
(@) w 0 w ¢ e ?
® 015 @ 0.12 2<10.0
0.10 0.08
0.05 004 |
L
0.00 0.00 . S T L 1
0 1 2
© w 3 0 T 2w 3

Fig. 5. Bifurcation curves for the heteroclinic orbit (12) in the (a, w) parameter space, A=0.5, A, =~1. (a) A =4.01; {(b) A = 5.0,
(c) A =6.0; (d) A =100, Shaded regions: ~a is shown.
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In the case A, =1, 05 A <4, using the heteroclinic orbit in (13) we have

M*(to, A\, A, 0, a) = I FE(O[A cos(wt + wy!t) ~ afi(1)] dt

22
- £(16~A%) scch’( 1664)‘ 1)
= J [A cos(wt)]) dt Y cos(wiy)

- | f - fi6=2
4+ A+ (4~ 2 )]
i A+(4 A)tgh( ) !
( 16-A° 2
o (16-23) sech’( l)
64
dt

[

- { 2
« J:, 16-A° (23)
2[4+A+(4-A)tgh’( —6'4")]
\
For (23) to have a zero we must have
aﬁl(A)
—_——lx
AR (A, w) (24)
where
-2
oo (16-a%) sechz(\/lém'\ t)
F\(A)= d¢
) 2[4+A+(4—A)t h’( ’6_}‘2:)]
g 64
and

. 3
. (16=2Y) sech’(\/wﬁ: r) cos(wt)
ﬁ,(A,w)=J de.
- 2[4+A+(4—A)t h’(\/w'*z:)]
& 64

In what follows we do not consider the calculations for finding the frequencies which correspond to
the tangential intersection, As above they are very easily found.
The threshold curve in the (a, w) parameter space reads

_AR(A, w)

= , A>0fixed, 0<A <4, (25)
Fi(A)
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This curve is shown in Fig. 6. In the case A, =1 and 0=<A <4, using the heteroclinic orbit (14), the
Melnikov function becomes
400

M*(1g, A, A, 0, a)= J F2(0[ A cos (w! + wty)—aj*(1)] dt

-2
v (16—A’)scch’(-\/1664A l)Acos(wl)

=I + dt | cos(wty)

- 16—A%
—-A+ 2
2[4 A (4+,\)tgh(\/ " 1)]
/16—A’ ?
o (16—A’)scch2( " t)
dt

- aJ:., _ — (26)
2[4—A +(4+/\)tghz(\/ " :)]
Making the same analysis as before we arrive at the following threshold curve:
=M A>0fixed, 0= A <4, Q7

FQ) °

which we report in Fig. 7.

a 0.4 i Y200 a 06
B 0.4
0o}
i 0.2
=
B
0.0 1 -1 [ 1 1 00
0 1 (@ 2 w 3 0
a 30 a 120

1.5

00

0 1 2 3
(e) v () v
Fig. 6. Bifurcation curves for the heteroclinic orbit (13) in the (a, w) parameter space. A=0.5, A;=1. (a) A =00; (b) A =10,
(c) A =1.5; (d) A = 3,99. Note that when A =0.0 one obtains the same bifurcation curve as that obtained for the classical pendulum.
Shaded regions: —a is shown,
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a 04 [ X200 a Q4 [
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02F 02}
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"
a2 Q2
s
o1 o1}
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00 Qo f
L 1 - . L i 1 § 1 el
0 1 2 3 0 1 2 3
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Fig. 7. Bifurcation curves for the heteroclinic orbit (14) in the (@, w) parameter space. A=0.5, A, =1, (a) A =00, (b) A =1.0;
(c) A =3.5; (d) A =3.99. Note again that when A = 0.0 one obtains the same bifurcation curve as in the classical pendulum.

The last case is A, =1, A,> 4, in which we have
+a0

M*(1g, A, A, w,a) = I FE(O[A cos(wt + wig) —ayi ()] dt

-0

J,“D 2VA (A —4) cosh( \ / 5%Al) A cos(wt)

=

+ dt p cos(wty)

- (A —4)+A sinhz(\/f:—él)

2
. 2~/X(A—4)cosh(\/i{—Al)
_QI
T la-8)+a sinh‘(\/%—ﬁ:)
_AIi,(:\,w)

4500 A5 0fixed, A >4, (29)
a £ A xed,

due. (28)

The threshold curve

is shown in Fig. 8.




M. Bartucelli et al. / Horeshoe chaos 593

a r=401] ¢ 1=5.0
0.25 F 0.20 }
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024} 0.5 }
- -
023}
23 0.10
1 L. 1 1 AL § - L 1 L J
0 1 2 3 0 1 3
(a) w (b) w
a a 0.040
0.12
0.035
0.08
0.030
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0 Vg 2 04 3 ) ' @ ? w 3

Fig. 8. Bilurcation curves for the heteroclinic orbit (15) in the (a, @) parameter space. A=0.5, A, =1, (a) A =4.01; (b) A =5.0:
(¢) A = 10.0; (d) A =100.0. Note the reduction to the pendulum when A > 5.0.

5. Discussion

In this section we discuss the results obtained in the previous section. Let us start by analyzing the case
A, =1,A 2 0. In this case for A =0, equation (1) reduces to the pendulum equation, and the two heteroclinic
orbits, (13) and (14), reduce to the analytical expression of the pendulum separatrix. As one would have
expected, we obtain in this limit (A =0) the same bifurcation diagrams as for the simple pendulum (see
Figs. 6 and 7). As A goes from zero to four, the threshold curves in Figs. 6 and 7 change qualitatively
and quantitatively. The turning points of these regions are the zeros of the function R,(A, w) in (25).
When A =4, system (9) bifurcates changing its phase portraits from Fig. 2 to a figure similar to Fig.
1(b). We sece that during the bifurcation the heteroclinic orbit (13) disappears merging into the hyperbolic
fixed point (27, 0). {(An analysis of the linearized system (9) shows that this point is degenerate). For
A >4, the bifurcation diagrams are shown in Fig. 8. When A >4, system (9) reduces to the pendulum
cquation, and, as expected, we see from Fig. 8 that in this limit the bifurcation diagram of (9) reduces to
that of a pendulum.

Let us now consider the case A, =—1, A = 0. Increasing from zero to four (excluded) we can see in the
figures how the bifurcation diagrams depend on this parameter. When A =4, the system bifurcates. The
phase portraits change from Fig. 1(a) to Fig. 1(b). We note that the centres [+2cos™'(}A)+ 4k, 0],
k=0, £1, 22, ..., disappear. This is because the fixed points (4nw,0), n =0, 1, £2,..., are degenerate
as one can easily see from the linearization of the system at those points (we note that our system is
structurally unstable). One can also see that the homoclinic orbit (11) degenerates into the fixed point
(0, 0), whereas the heteroclinic orbit (12) confinuously changes its shape becoming the heteroclinic orbit
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shown in Fig. 1(b). When A >4, the term —1A sin(}¢) becomes dominant and we get again the pendulum
equation. The bifurcation diagrams obtained above are also in agreement with earlier results [6-8].

We finally observe that the bifurcation diagrams in Figs. 3 and 4 do not reduce to those of a pendulum,
when A -0 (note that system (9) in this limit is the antipendulum). In the limit A =0, however, the
homoclinic orbit (11) and the heteroclinic orbit (12) do not exist any more, they indeed degenerate in
the fixed points (2m,0) and (0,0) respectively. On the other hand, for small values of A (A <1) the
homoclinic and heteroclinic orbits shown in Fig. 1(a) get closer to each other, and an analysis based on
a first order estimate of the splitting of the corresponding stable and unstable manifolds could be too
crude. This last point we plan to investigate in a future paper.

Acknowledgment

The financial support of the Consiglia Nazionale delle Richerche, Roma, Italy, to one of the authors
(M.B.) and of the European Research office of the United States Army (through contract No. DAJA-45-85-
C-0042) is acknowledged.

References

{1] J. Guckenheimer and P.J. Holmes, “Nonlinear oscillations, dynamical systems, and bifurcations of vector fields”, Applied
Mathematical Science 42, Springer, Berlin (1983).

(2) B.V. Chirikov, Phys. Rep. 52, 263-379 (1979).

(3] A.R Bishop, D.K. Campbe!l and B. Nicolaenko (eds.), Nonlinear Problems: Present and Future, North-Holland Mathematics
Studies 61, Amsterdam (1982).

(4] A.R Bishop and T. Schneider (eds.), Solitons and Condensed Matter Physics, Springer, Berlin (1978).

(5] M. Salerno, Physica 17D, 227-234 (1985).

{6] F.M.A. Salam and S.S. Sastry, in: Chaos in Nonlinear Dynamical Systems, J. Chandra, ed., Society for Industrial and Applied
Mathematics, Philadelphia (1984) 43-55,

[7) M. Bartuccelli, P.L. Christiansen, N.F, Pedersen and M.P. Soerensen, Phys. Reu B. 33, 4686-4691 (1986).

(8] Z.G. Genchev, 2.G. Ivanov and B.N. Todarov, IEEE Trans. Circuits and Systems 30, 633-636 (1983).




ok & Sl awad s st ¢ Aid amit o a8 a St dbdnnd

1114

. IEEE TRANSACTIONS ON MAGNETICS, YOL. MAG-2, NO. 2, MARCH |937

ANALYTICAL AND NUMERICAL RESULTS FOR A LONG JOSEPHSON JUNCTION'WITH SURFACE L.OSSES.

S. Pagano
Laboratory of Applied Mathematical Physics, The Technical University of Denmart.
DK-2800 Lyngby, Denmari:.

N.F, Pedersen and S. Sakai*
Physics Laboratory I, Technical University of Denmark, DK-2600 Lynqgby, Denmark

A. Davidson
181 Research, P.0. Box 218, Yorktown Heights, N.Y, 10598, U.S.A.

Abstract,

In this paper we shaw severs] analytical approaches to
study the effect of dissipation on fluxon motion; our
attention is mainly devoted to the surface impedance
tesm which 15 the main quantity responsible for
qualitative dynamical changes in the junction.

ro tion.

Seliton (fluxon) dynamics in the long Joscohsan
junction tJosephson transmission line or JTL) has for
sany years been one of the most active research areas
within the topic of Josephson tunneling. Fluxans show
particle-like behavior in the fact that they carry
en2rqgy and sasentum, they are structurally stable in the
serse that small perturdbations do nat destroy them, and
thev can travel at almost the speed of light within the
ITL. all these features mat> fluxons excellent
caniijates; for being the building blocts of new fast
electronic devices, as has recently been demonstrated
esporimentally (1),

In view of this it is important to study the
effects of varicus farms of Jissipation on the fluxon
miti10n, since these dissipations are responsible for
distortion and even Jdecay (switching) of the fluxons.
Theugh 4 number of numerical simulations have been done
to study this effect (2], very few analytical results
are known. This is mainly due to the fact that the mode]
equation for & Josephson transmission line, the
oerturbed sine -Gardon equation, has na known general
analytic salution. Hence the main results are given in
terms of & pervturbative snalysis around kinown solutlons
of the sine-Gordon equation (Ref, 3).

From numerical simulations (2] it has been shown
that due to the presence of surface damping a8 number of
new phenamens occurt (i) A distortion of the pulse shape
of tre fluron together with a non-Lorenzian contraction;
this 1% in contrast to the relativistic contractian
prezent 1n the solution of the non-dissipative . .
sine-Gordan system. (ii) The occurrence of an overshaot
in the fluvan pulse accompanied with damped
czlvliations, (1i1) A decresse 1n the marximum bias that
can sustain pure fluxon motions with a corresperding
lecrease af the eneryy; thus the pure soliton solutivns
pecone ynstable dqainst the rotating solution,

[n the first section we shaw an analyticael approach
‘or solving the perturbed sine-Gordon equation with a
cirzceawise linear appraximation of the non-livesr sinre
teran, In the second section we consider a phase-space
a3l/5is *hat. although very simple, gives surprisingly
qon2 results 1n predicting the frequency and the damping
costant of the v.ershoot cscillations cbserved
rumerically, as well as the change in the pulse shape of
‘re fluvon, Finally we intvoduce a new pocturbation
acp-rsch that Jives & surprisingly gocd aqreement with
the resully of numericd)l computaticns.
¢ Fecmanent address. Elestrotechnical Laberatory, I-1-4,
sy, Sabara-ruras Hiikaci-guny Ttaral i 375, Japan
it recaived Septomher 3. 1986
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Analytic resylts for trianqular current phase relatiun,

The JTL Is modeled by a perturbed sine-Gorden

equation

$ex~ Foe- 5ind - ady ¢ Buae * 4 =0 (B 9]
where § is the phase difference between the two
superconductors forming the junction, a is the
normallzed parallel conductance, # is the normalizeo
surface conductance and 4 Is the bias current
normalized to the maximum Josephson current; spece is
normelized to the Josephson penetration length A, and
tine is normalized to the inverse of the Josephson
plasma frequency &, = E/A,, where & is the speed of
light in the Josephsan transmission line.

In what follows we will consider the case in which
the length of the junction is big enough to disregara
the effects of the boundaries in order to concentrate
our attention on the stationary fluxan motion,

In general when ay i and m are gifferent from oo
EQ. | can not be solved analytically. To extract sore
analytical information one can appraximate the sire teim
in Eq. } by using a triengular current-gchase relatian
with g periodicity (Fig. 1) €($) defined by

L(§ -~ 2na), -0/2 + 2nn ¢ § ¢ asgednnm
f{g§) = . 2)
. “+(§ - n-2nu), /2 + 2nx $ 4 ¢ In/22nn
[ i S . .%n
(3 I
1
SN 1
N
I
2 . '
T Y Y .z.n
. I |
0 1 1
.gi.k 0 ..J}.. -4 -2 0 2 ¢

-— (3

Fig.l. a) Triangular current-phase relation fi(§). rb.c:
Fluxon tine shapes with o = 0.02, £ = 0.0!y and 1= 2/n,
(8) ur 0.9 giving q = 0,079, (c} us 1.0 giving m* 2.569
!

' The mai1n idea of this pracedure is that now Fag. |
is a plece-vis? linear equation. 1.e. Lhe pl.ase space ¢
divided in regions (reqions I, Il and IIT in Fig. 1) un
wnich €q. | 19 linedr & d the Cuirespondirg solut on
can be founl by elementary analysis. Caution has to be
taken to properly join the solutions at the bouidary uf
the gifferent regions af the phasc-space. The proccdnre.
requivring rather legtby calzulatians, has Laen carvviey
cut 1n Ref, 4, using 3 traveling-wave dsnunplion of U
ealution t¢ Eq. 1y which 18 then reduced to 4 thiod
order arcinary differential! equation (30E):

0018-9464/87/0300-1114301.0001987 IEEE
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where u is the velocity of the sojution and § = x-ut,
Tne solution in the three regions of Fig. 1 is given by

. uu!, - f(§) +m=0

n
(4)

t =8, exptr.1eB explrefisRiexpiraf? - mq/k +x (1])

A,erp(q.f) ¢+ 7k

CoevplQ-§) + Caexplqadh + %7k ¢ 2 (1n
where A,y Ces Cuy Byy Bsy Bo are constants and qiy Qas
g and r,y fas fy are the roots of the characteristic
rolynomium Pt of Eq. 3 (the q's are related to P+ and
the r's to P.)

Pt = fux® ~ (1-u®)y® - qux £ k =0 (3)
Due to the farm of Pt we have, for P+, always a negative
real root g, and for q. and qa either two positive real
roots or a cauple of complex conjugate roots with
positive real part. For P- we hive always & positive
root ry and for r, ond re ejither two negative roots or a
couple of complex conjugate ones with negative real
part.

This information, together with the asymptotic
conditions on the solution § ctf—o:aa gives Eq. 4. The
values of the constants A,y B,y Bes Bus Cas Cy and 7 are
getermined by the matching conditions of §. §¢ and i"
st the border of the reglians in Fig. 1 (431, TZQ main
reecults of this approach are the following. The system
rarsmeters for the observation of the overshoot in the
fluxon shape, (two complex conjugate raots in P+} is
g:ven by

A > 4a®/27k® ‘(s)

In presence of the overshoot, Fig. 2a, the period
of the oscillations and their decay rate can be computed
respectively from the imaginary and the real part of the
two compler conjugate roots Qx and Qs of P+. In Fig. 2a
tre absolyte value of Bg is shown in 8 log scale; far
poth the period and the decay rate of the oscillations a
surprising similarity with the numerical results of the,
integration of equatiaon Eq. !y Fig. 2b [2), Js found.
The current-velocity relationship for the fluxon tan be
derived analytically (4] and in Fig. 3 a comparison of

10? T T T |

pvy)
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(8) finalytical results,
The parameters are:
ta~-1) y = 0.9, 4« Q.079;
“acPr g2 L My 0,569, (b-)) = 0. (b-2) Mt ©.575.

113.2. Mlu-an line chapes, b,
Nemoeegcal integration of Eq. 1.

cT 0,02, 0 001, b = 270,

11s

1
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s . 090
=3 1,025 ’
006
08%
-008 |- 1,1
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logy M)

Fig.3. Comparison of the A ~u curves computed
analytically (solid curves) and the results (2] from
.numerical integration of Eq. 1| (marks!) for various
values of the parameters a and f.

the computed " -u curve with the results of a numerical
simulation of Eq. 1 is shown. In this calculation the
value of ¥ (Eq. 2) is chosen to be 8/s3" after a
‘comparison of the junction coupling energy per unit
length with that of Eq. 1. As shown in FiqQ. 3 the
‘analytical results obtained are very close to the
numerical ones for the original system.

The numerical methods used in this paper were
simple and direct. An annular geometry was assumed. and
the simple finite difference equation corresponding to
€q. | was solved. Usually an annulus of normaljzed
length eight was used, with a total of 400 finijte
elements mating up the ring. The time step in the
simylations was usually abaout (.005/w,. Situations
with light damping needed smaller time steps; heavser
.damping could tolerate larger steps., Al] resulte were
tested against variation with the spatial grid and time
step. Initial conditions appropriate for creating @
single soliton were approximated by a linear ramp in
phase 2n over the length of the junction, and the
transients due to the relaxation to the true s3iiton
'were allowed to decay before any measurements were made.
The reproducibility of the results despite variations
in spatial grid and time step is the main reasun for
confidence in the numerical results,

Phase space analysis.

In this section we shall develop a phase-space
analysis for the perturbed sine-Gordon equation €q. 1
in arder to investigate the effect of the surface i0s3
on fluvon,

As in the preceeding section we assume a tre.eli-g
wave solution to €q. 1 on an infinite JTL with a
velocity u. We obtain

'ﬂUQ,,, l (l‘u‘)f,! + cuf, - sing ¢ - 0
To this third crder ODE is ascociated a three-
‘dimensional phase-«pace in which the fluvun scluticn
represents 3 separatrir. 1n the sense that 1t conracte
tvo fived points cf the phase-space 10 infingte ti=e,
The fized peints involved are obviously given Ly F -
(}:i,off" * (arceinm ¢ oar. O O,

In the folluwing & l1n2arized analysis of tre
gynamice around the fi1red pointe P will be perfy ret.
Azsuming 4 suiution of Eq. & given by
LR A

gy = grovynm e ;(gl 1 e
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we obtain to first order in § the }linear equation

- Fy -u”) 3 3 - -t 3
fu 0,', ¢ 1=y )9,, L4 auir f 1{ §=0 (?9)
whose solution is determined by the roots g of the
4550C1ated polynumimum
1 ot
Piq} = q’ - 1;9 Q. - ﬁq IS .L:‘- = 0 {10)
J e Pu

This polynomium Eq. 10 is similar to Eq. 4,
ecept for the [ast terms and it will show the same
z200loqy of roots. The phase portrait near the fixed
point is shown in Figs. 4a.b., Figure 4a corvresponds
to the case of three real roots, that gives rise to a
sa30th fluxan shape with no overshaat. In Fig, «b the
czase >f complex conjugate roots is considered and the
szci1llating behaviour of the overshoot is clearly
i¢entified by the spiraling of the phase-curve outwirds
frcm the fired point,

Xy

Xy

a) b)

Fig.4., Phase portrait near the fixed points. (a) two
gositive roots and one negative (b} ane neqgative rool
and two complex conjugate.

This Lind af analysis cannot give the threshold for
tne agpearance of the oscillating overshoot, a5 the one
tn the ficst section, because the relationship between
the bias and the velocity u of the fluron is not known.
However 1t 18 knuwn from numerical integration that the
velocity of the fluvon will rapidly tend to unity when
the bias is increased. Assuming a unit velocity in '
Eq. 10, one can derive an expression for the threshold |
for auserving avershoot in the fluxen, in the same way
3s 1n Eq. &. The result is

8> 4a%/¢@7(1 - N &) an !

The validity of this conditjon is limited by the
fact that = must be consistent with a fluxon velocity
very close to unity.

Additianal resulls can be found Oy computing the
tcorplex) roats of Eq. 10 using standard methods; that
gives the decay rate p and the frequency W of the
ascillations of the overshcot. In the case u = | and if
©2%27301-q1) 27 | (which does not introduce major
rest-i1ztions! we Can obtain fairly simple expressions

for ¥ and w
o2 o=l9 UL - mEypmise (2
w= {32 (1) o L7 LT (13)

He have compared the above vesults with the ones
ottaired by the numerical integration of Eq. 1| (2] and
35t31n a “ery goud agreement (within 2-3%),

rrothes Interesting result that can be obtained by
t'e pruze-cpace analysis reqards the slope of the
leadta and the trarling edqge of the flu.on.

It 1e well Pno-n that, in tre absence of
1T Pt the slape23 of trhe leading and the t.ailing
e2ge af the flurcrn are ejual, i.e. the pulee thape 18
Lymret. 2. Tre pr2sence 3F ¢dissipative tovms may oredd

o ' ,,...!’
o R it
i ?}1‘3’( o I

this symmetry by changing the slopes of the fluaon

edges, as has been observed in numerjcal integrations.
Let us assume for simplicity that we have only one

dissipative term in Eq. 1, namely the a2 term. Using

the same procedure as shown above, we ocbtain the

characteristic palynomium in the fore:

Ptq) = q® + au/(l-uf)q - (-f1878/¢1-u®) = 0 (1¢)

the roots aof which are given by

Qi.e ® —ou/2(i-u®)¢
((au/E(l-u.))‘0(1-’f""l(l-u‘)l"‘ (15}
In a neighborhood of the fixed points, the:solution
3(€) will then be given by

S = aresinm ¢ Aenpl-q,f)
(16
°(F) = arcsinn + Bexp(-qsf) + 2n

where §' represents the leading edqge of the fluxon and
$+ the trailing one.

From €q. 1S it is seen that when o is very small,
the two exponents are equal in magnitude, but when o is
not small a difference in the magnitude of the exponants
is found, This difference becomes more and more enhanced
as m tends to unity, reproducing the behaviour observed
in the numerical calculations. The same procedure that
leads tg Eq. 195 can be applied in the case 8 = 0,
however the calculations are more lengthy ta carry out.

Perturbationa] Methods,

In the previcus sectian it has been shown that is
possible to derive analytical results concerning the
influence of the dissipative terms an the fluxon
dynamics. Unfortunately, the lack af knowledge abaut tre
relationship between the bias current and the fluxon
velocity (n-u curve) limits the amount of infarmation
that is possible ta obtain from such a procedure. Since
the exdct wavefarm of the fluxon in presance of bilas and
dissipations is not known, various perturbative methods
have been used to derive them-u curve. The classical
one (3] assumes the kink solution of the sine-Gordon
equation as an approximation to the solutions af Eq. 1.
i.e.

Fxyt) = darctglexpt ¥ (x=ut))) amh
where ¥, is the Lorent: factortL'l/(l-ufi"”. lnserting
Eq. 17 into Eq. | and imposing a pcwer balance
between the energy output due to dissipation and tha
energy input due to the bias current, the following
evpression far the M -y curve is obtained (3]

M = /miu Yia + 0 1:/3) (18
Altnough this expression represents the Qualitstive
behavior of the fluxon as observed both erperimentally
and in ~umerical simulations quite well, it fails to
describe the high velocity region, In fact, when u=>l
€4. 18 predicts that the blas gaes to infinity. 1n
contrast to numerical and expecrimental results.

The problem lies in the form af the solution
assumed in Eq. 17, which implies that the fluxon
becomed mare and more narrnw as the velocity approaches
unity. It has been otserved numerically that when i = O
the preaance of a-dissipation determines & lowe:r [irnit
in the fluxon contractian. Ferrigno ard Pace (5] have
frurds ( 320 ) similar results by using soluticn 3(-.t)
* arcsinm ¢ Jnlx,t)y where §.l{x.t' 13 given by Eq. 17
with a different contraction facsar §,:

LOIRS R LA BENTLIR e (9




Trie leads to 4 M-u relationship given by N = (hlw)r []
¢ edicting that m =>1 and Y,.~?wx/4a for u~>]. Both the
perturbation apgraach in {3) and in (3] have their main
1imitation 1n the fact that the perturbative terms (ad,
o Géaves M) in 13) and (M ¢ mcosd+ad. ) In (3] ere
considered very small, while for M ->1 this is not true.
ro: eaver the presence of the i term distorts the shape
af the fluron consjderably from the one assumed in
£q. 14 making the ansat? aboutl the salution to Eq. |
unredlistic,

A possible way to handle the first of the two
p-oblems exposed can be to rewrite Eq. ! as

.- d.0- sindem~ a'l b = 'G1§1"\' BEuxet ad. (20)

Tme left side of Eq. 20 has an exact solution (4) for
sny value of m: .

$0ryt) = Garctglexpt ¥ix-ut)) +arcsiny (211

wrere ¥x ¥, is given by Eq. 19 and a’=-y2u3 18, Note
that typically a’ << 1 even when m =» 1. Inserting Eq.
2?1 irto €Eq. @0 end imposing a power balance on the
terms of the right side in £q. 20 we obtain

m = mufia » 885 22y

wh1Ih 18 the same as £q. 18 but with a different

‘luvon contraction term, It can easily be shown that
trhe ansatz Eq. 21 always leads to Eq. 22 for any choice
of {. In the case 4=0 the erpression for ¥ (Eq. 19) can
be Jerived by minimizing the power balance energy

‘Eq. 23 to be derived below) with respect to J. The
pawer talance crorgy fYar a general contraction factor
can be computed from Eq. 1 by multiplying Eq. 1 with
$., integrating once with respect to time and
integrating all aver the space. To perform the
integration we have assumed the fore Eq. 21 for § with
¥ at an independent parameter and the power balance
relation Eq. 22. As a result the power balance Pnergy is
chtained

£z atY() + ut o _?__4'-’1_' ) - Eua)’" (23

wtere u is given by Eq. 22,
In the case S0 the minimizing procedure cannaot be
applied because, as it has been discussed in the

n ;
; 0 1.0
002 - Of - 06 8 100 '
| a=.02 8« O
-002 ~{ 08%
-004
<4080
q’ 5
@ J
2 .006
~ 085
-008 |
L 0.80
-06 -04 -02 0
log n
£:3.%. Conparison between m-u curves vbtained by

ctanta‘ad pecturbative scheme (dashed curve', the ogne
L (ods2d (full curvel and numerical integration of £q.1
“teors full curve connecting aarisdy for varioug

sluve of the parumeters o and (1,
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previous sections, the effect ¢f the g term is to
strongly deform the fluron shape maljng the ansat:
£q. 21 not valid anymore.

In the case <<] the expression Eq. 19 for J can
still be considered a good approximation, supporting the
result obtained by the perturbative sralycis.

He have checked the expression £q. 22 with
‘numerical results from the integration of Eq. |
obtaining a much better agreement than for the stardard
perturbation result Eq. 18. In Fig. 3 M-y curves
obtained from Eq. 22 are compared to numerical results
from (2) in the critical region of high bias ang
velocity values. As expected & deviastion is found when
is not small compared to a and when the veloCity of the
fluxon is close to 1, i.e., when the overshoot is
priesent and the assumption £q. 2! is nat valid
ANYMOTre,

As a final remark we note that Eq. 22 predicts an
increase of the width of the fluron when the 0 term is
present. In particular in the limit case mM =l and usi
the value of ¥ has a correction with respect to the
value found in ref. S for 4=0, that to the first order
inft, ¥ is given by

| ¥ = mska (1 - 17031 + 16a3/5%3))) (26)

usiogn

He have develaped a8 number of analytical methods to
istudy the effect of the surface impedance damping on the
f]uxon motion in & JTL.

A simple piecemise linear approrximation of the sine
term in the perturbed sine-Gordon equation (PSGE) that
models JTL's allows to derive analytical solutions. Tt
!is shown to be very accurate in describing the dynamics
‘of the original non-linear equations, especially with
‘regard to the effect of the surface damping term. A
phase-space analysis of the PSGE in the travelling wave
assumption is able to predict quantitativel- the
'dynamical effects of the surface damping in terms of the
‘frequency and decay rate of the oscillations connected
‘with the overshoot in the fluxon shape and the asymretr;
in the fluvon shape. Finally, & new perturbative scheme
based on the salution of PSGE with quadratic camp:ing 1s
derived, leading to & generalization of earlier results,
obtained in absence of surface damping.
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Breather dynamics in the sine-Gordon system with changing sine (erm cocflicient is investigated. [t is shown that for
adiabatic changes the frequency of the breather in rescaled time is constant while the velocity changes just as the velocity of a

kink.

1. Introduction

During the past years a great decal of interest
has been devoted to the study of soliton dynamics
in various physical systems [1]. One of the systems
where soliton propagation is more accessible to
cxperimental measurements is the long Joscphson
junction [2]. In this case the dynamics is governed
by the sine-Gordon equation and soliton’s
(fluxon’s) resonant motion manifests itself with
the presence of de singulanties in the current-
voltage characteristic of the junction (2, 3]. In this
context several physical situations such as smooth
spatial modulation of the Jusephson supercurrent,
slow 1cmperature drift of the junction, etc... are
modclled, (neglecting dissipation and bias), by the
following simple perturbed sinc-Gordon. equation
in normalized form

b, = ¢, = (1 +alx.1))sin(¢)

ni{x 2
- (2 ins). (1)

*Alva (G N S.M. sczione di Salerno, [-84100 Salerno, [taly.
**DPermanent address: Physics Laboratory 1, The Technical
University of Denmark, Dk-2800 Lyngby, Denmark.

Here ¢(x, () is the field variable, i.e. the macro-
scopic phase difference across the junction,
a(x, 1)sin(¢) represents a nondissipative per-
turbation with a a slowly changing function of
space and time, and m(x, () is the instantancous
2m-kink mass.

In a previous paper [4] the effects of such a
perturbation on a 2w-kink motion were invesli-
gated by assuming an adiabatic “switch on™ of the
perturbation. The analysis was performed without
the nced of perturbation theory, by using the
conscrvation laws of system (1). The results were
also found in good agreement with numerical ¢x-
periments.

In the present paper we will continue this analy-
sis by investigating the effects of the samc per-
turbation on the other soliton solution of the
sine-Gordon equation: the breather. A breather is
a bound state of a soliton and an anti-soliton that
is described by two parameters: the velocity with
which the whole structure moves and the internal
frequency of oscillation [§]. This will require the
use of two conscrvation laws ol eq. (1) to dec-
termine the perturbed breather dynamics. In scc-
tion 2, by using the cnergy and the momentum of

0167-2789 /87 /503.50 © Elscvier Scicnce Publishers B.V.
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eq. (1) we compute the rate of change of the
internal frequency and of the velocity of a sine-
(Gordon breather under the influence of perturba-
tions of type asin(¢) with a either a function of
space or of time. In the analysis we will assume an
adiabatic switch on of the perturbation, this avoid-
ing the creation of background radiation into the
svstem. As a result we find that the internal
frequency in “rescaled” coordinate is constant

2. Analysis

f

S. Puguno et al. /Sine-Gordun breather solution

397

while the velocity exactly follows the same changes
as those found in ref. 4 for a 27-kink. In section 3
the adiabatically *switching” process is numeri-
cally simulated for the a(f)sin(¢) kind of per-
turbation. The comparison between numerical and
analitical results confirms the validity of our sim-
ple approach. Finally in section 4 we estimate the
limits of validity of the adiabatic assumption and
summarize the main results of the paper.

Lut us start by defining the energy H(t) and the momentum P(r) for eq. (1) as

4

H= [ T(1el+ b+ (14 a)(1 - cos(9))dx,

-

P=- f "6, ¢,dx

and by considering their time derivatives. With the help of eq. (1) we get

dH +

—F=/ a,(} - cos($))dux,
dpr + o

T -f a,(1-cos(¢))dx,

- o0

(4)

(5)

from which 1t is clear that when a, =0 (1.e. @ = a(x)) the energy is conserved [4, 6], while when a, =0 (i.e.
n = a(tr)) the momentum is conserved [4]. In the adiabatic case with a spatial localized entity, the
derrvative of a in egs. (4), (5) can be taken outside the integrals and one is left with the spatial integral of
{1 = cos(¢)) in both equations. (For a 2#7-kink these equations provide the sume informations.) In order 10
tiad the rate of change of the breather frequency it 1s convenient to introduce the rescaled spatial and time
vanables -7,

dz=(1+a)"?dx, dr=(1+a)"*du, (6)
in terms of which eq. (1) is rewritten as

: da! a1
bd.— ¢, ~sin(¢)=¢, %E»m)“#, r:?gm) o

where the last two terms represent perturbations to the pure sine-Gordon equation. Eq. (6) shows that the
velocity s the same 1n the original and in the rescaled variables

d: dx

dr dr e (%)

_‘.”lv'.“. -
Tomtlel ey
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while the re-scaled frequency w’ is related to the original frequency w by

d

©

|

w =

=(1+a)“‘”%$=(1+a)“‘”w. : (9)

[=%

T

For adiabatic changes of the mass m the instantancous breather solution of eq. (7) is written as

' ¢=4mn-‘{r(w,)-.sin[w,r—(:,)gf—uz)+¢>0]}. (10a)
: w'coshlr(w’) r(”)(z“vf)]

(10b)

F(w’)ﬁlsin[w"rf'(v)'] -wT(v)v(z-vr)+ ¢0] }
w'cosh—ﬁ'(w’)"l"(v)(z—vfw ’

=4mn"{

! where

r(p)=(1-p2)"" ()

Inserting eq. (10) into =q. (2) and using eq. (6) we get for the energy :

-

b 172 -t -1

K H=16(1+a) " I(w) T(v)=2ml () T(v). (12)
A

; Similarly, from cq. (3) we get for the momentum

”Q 172 -1 -1

M P=16(1 +a) "I'(w) T(v)v=2mI(w') T(v)v. (13)

g e

P
R

In order to usc ¢gs. (4), (5) we have to perform the spatial integral of (1 — cos(¢)). Since the changes are

i._: adiabatic the breather parameters v and «’ will change very little during one period of oscillation.
3 Therefore we can first take the time average of (I — cos(¢)) and then do the spatial integration. With the
.%& use of egs. (10) and (6), after some lengthy calculations we get
-: | , v on Sr(w,)-l
¥ = [ dt 1-cos dx= ————— (14)
71(, /.m ( (4)) r(v)(1+a)'”?
i
J From cys. (4) and (5) together with egs. (12), (13), (14) we have
R g
X I )
. EE(H -P )=128(1—w’ )((!,+U(!"). (15)
Observing that
1
‘ %‘72“,+U“w - (16)
,! cy. (13) implies
)
: da-wr=o, (17)
4

N ———
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independently of how the change of a(x,?) is made, the only requirement being its adiabaticity. the
frequency parameter in the rescaled time w’ is constant. The frequency w in the original time is then easily
obtained from eq. (9).

To compute the rate of change of the breather’s velocity we observe that since w’ is constant there is no
substantial difference between the breather problem analized here and the 2#-kink problem analized in ref.
4. We have only to replace I'(w’)~! by 1 in egs. (12), (13), (14) and take over the results from ref. 4. These
results depend on a(x, r) and on the initial velocity. Here we consider only the cases a, =0 and a,=0.

Cuse a = 0. In this case the momentum P is a conserved quantity. Thus from egs. (5), (13), (17) it follows

(in = inttial)

l/Z

(1 +a) " vl(v) =constant = v, . I'(v,,).

this giving for the breather velocity

= vm/[l +n v’ )]l/2

(18)

(19)

Cuse a, = 0. In this case the energy is the conserved quantity (see eq. (4)), this implying (egs. (12). (17))

(1 +a)”?r(v) = constant = ['(v,,),

from which it follows that

= [1'3,,— a(l - o} )]\/2.

(20)

(21)

In the next section we will compare the results referring to the a, = 0 type of perturbation with those
obtained by a direct numerical integration of system (1).

3. Numerical experiment

Ve have integrated numerically eq. (1) assum-
ing periodic boundary conditions over a normal-
i7ed length L= 40. This value has been chosen in
order to avoid interferences between the tails of
the hreather-like solution during the time evolu-
ton of the system. The numerical algorithm is
hased on an explicit finite difference scheme de-
rived by Ablowitz et al. [7) that, with a choice of
the spatial and temporal step size of 0.1 ensures
stabthty and accuracy of the calculation [8].

In all numerical experiments we have restricted
ourselves to the case a = a(r) since the other one
(e = al v)) requires a much more complex code to

RN, B ek
i ""'!N' R‘A\')ucw‘" ’LE:)W‘ B St *

be implemented on a finite length model and does
not give a deeper understanding of the system.
Each numerical integration has been carried out in
the following way: a) The initial condition is set in
the form of a “pure” sine-Gordon breather and «
is set to zero; b) a is changed (increased or
decreased) at a constant rate and the frequency
and the velocity of the solution are mcasured at
each oscillation period of the solution itself. A
value of the rate of change of « of 10~? has been
chosen in such a way that it ensures us that no
spurious dynamical eflects, like phonon creation,
are generated.

The most interesting part of the numerical pro-
cedure is the way that both the velocity and the

e ————
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frequency of the solution are measured. The prob-
lem lays in the fact that a moving breather does
not have a constant profile, but osciilates in an
un-harmonic way.

The program locates the maximum M, of the
solution and its x coordinate at each time step,
using a parabolic interpolation between adjacent
spatial grid points. M, evolves in time in an
oscillatory way, reaching a maximum value M_,
once per period of oscillation of the solution. M, ,
is evaluated together with the corresponding time
value, again using a parabolic interpolation be-
tween adjacent time points. Once that the posi-
tions x, and x, and the two corresponding times
1, and 1, of the two consecutive maximums M, ,
are known. then the velocity and the frequency of
the solution are calculated as

{x, = xy) 2

= 0 and =
, (’l "’n) an @ (’:”o)

(22)
In eg. (9) we have given the connection between
the original frequency w and the rescaled {requency
w’. From eq. (10a) we see that the rescaled
frequency w) measured at a given point is

W) = wT(v) (23)

and from cqg. (10b) that the rescaled frequency wj
measured in the frame moving with the breather
Z=0T)IS

w':‘—'w’['(v)_l. (24)

These relativistic effects are important when com-
paring to numerical experiments. Indeed, the
method we have used to compute the solution
frequency corresponds to a measurement in the
original time, so in order to compute the corre-
sponding value of the parameter w’ in eq. (17), eq.
(23) must be used. The results of the numerical
integration arc shown in figs. 1 and 2. In-fig. 1a
the case of a resting breather (v = 0) is analyzed.
The initial values of the [requencies w are varied
from 0.1 to 0.9 and the corresponding frequency

Y]

Fig. 1. 2) Frequency w of the breather as function of a = a(r)
for different starting frequency values. The dashed curves are
the theoretical predictions (eqs. (9). (17) and the full curves
are the numecrical results. (When the dashed curves are not
visible they coincide with the full ones.) The initial velocity is
sct to zero and the line length is L = 20. b) Same as in fig. 1a
but with an initial velocity of 0.5 and linc fength L = 40.

changes are computed, both from an increase of a
up to a=1 and for a decrease of a down to
a= —1. A comparison of the numerical results
(full curves) with the prediction of egs. (9). (17)
(dashed curves) shows that an excellent agreement
is reached, except for the region where the
breather-like solution becomes so wide that the
influence of the periodic boundary conditions can-
not be neglected (in this case the spatial length
was 20). In fig. 1b a similar comparison is shown.
corresponding this time to a moving breather with
an initial velocity v =0.5. Again a very good
agrecment is reached, apart from a region where
the same considerations made before apply (this
time the spatial length is 40). Once that it has been
shown that the change of the frequency « with a
docs not depend on the initial velocity of the
breather, as predicted by eq. (17). a number of
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Frig 2 Velocity v of the breather as function a = a(1) for
different setting of initial velocities. The initial frequency is 0.5.
The dashed curves are the theoretical predictions (eq. (19)
while the full ones are the numerical results. (When the dashed
curves are not visibie they coincide with the full ones.)

integrations with a fixed iritial frequency w = 0.5
and with initial velocitiss ranging from 0.1 to 0.9
have been performed. The results are plotted in
fig. 2 where the velocity of the solution is plotted
as a function of a both for an increase of a up to
a = 1 and for a decrease down to a = —1. Again a
very good agreement is found, except for the
pouts lying in the previously discussed region,
verifying the results (eq. (19)) obtained from our
analysis,

4. Conclusion

In this paper we have considered the effects of
changes in a in eq. (1) on a breather solution. We
have shown that as long as the changes are adia-
hatic the rescaled frequency parameter w’ is con-
stant and the velocity changes just as the velocity
of a kink. Finally we have done a numerical test in
order to estimate the limits of validity of the
adiabatic assumption, To perform this test we
have used the following expression for a(¢):

A
™

atr)=S{dn+ A van " as(e— 476)] ),

(25)

where Ty is the integration time, s is the maxi-
mum slope of a(f) and A is the final value of a.

il g
2 iﬂtrt'mmﬁn? .

0.8+
v
0.6 -
1]
044 - .
Tt T
o0 010 100 s

Fig. 3. Dependence of the change of v and w on the rate of
changes of a(¢) (scc eq. (25)). The initial [frequency and
velocity are both set t0 0.5, and a is changed according to cy.
(25) (A =1, Teg=(20.4/5)+ 100). The final frcquency and
velocity are plotted as functions of 5. The dashed lines corre-
spond to the theoretical predictions in the adiabatic approxi-
mations (egs. (9). (19)).

The results are summarized in fig. 3 where the
final values of w and v are reported as function of
s (w;,, =05, v,=05, A=1) and T is adjusted
in order to give a(Tg) 2 0.994. The figure shows
that up to a value of s=0.1, corresponding to a
time of change of a comparable with the oscil-
lation period of the breather, there is no apprecia-
ble deviation of the numerical results from the
theoretical predictions based on the adiabatic as-
sumption.
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The stability of the McCumber solution of the perturbed sine-Gordon equation that describes
the dynamics of a long Josephson junction may conveniently be studied within the context of a
Fourier-Galerkin approximation. In the absence of an externally applied magnetic field, this pro-
cedure predicts analytically how the number, locations, and widths of the unstable regions of the
McCumber curve depend on the junction parameters. These instabilities are of physical interest
because they evolve into the fluxon oscillations associated with zero-field steps. In the presence of
a small applied magnetic field, the same procedure provides a technique for studying Fiske steps.

I. INTRODUCTION

The determination of instability regions associated
with the McCumber curve in the current-voltage (I-V)
characteristics of long, narrow (hysteretic) Josephson
tunnel junctions has attracted research interest because
the existence of such instability regions is directly con-
neeted with the experimental observation of zero-field
steps (ZFS's) in the I-V characteristics of such junctions.
This connection was first pointed out in 1973 by Fulton
and Dynes,' on the basis of observations on a mechani-
cal analog of the long Josephson junction. Later, the
problem was studied analytically by Burkov and Lifsic.?
More recently, Pagano et al.’ have considered the prob-
femi in some detail, reporting analytical, numerical, and
experimental results.  Briefly, the picture that emerges
from these studies is as follows: To observe ZFS's exper-
imentally, one raises the bias current applied to the junc-
tion from zero up to the critical value, whereupon the
junction switches from the zero-voltage state to the gap
state. The bias current is then reduced to some nonzero
value; during this phase the McCumber curve in the /-V
plane is traced out. Raising the current again then al-
lows tracing out the ZFS's.

This situation may be understood theoretically by per-
forming a stability analysis of the particular solution,
corresponding to the McCumber curve, of the perturbed
sine-Gordon equation that describes the dynamics of the
junction. The simplest case is that in which there is no
external magnetic field applied to the junction. In this
case 1t is particularly convenient to perform a mul-
timode, i.e., Fourier-Galerkin, decomposition of the
model cquation since the McCumber solution corre-
sponds w eaciiditun ol uniy the zero-order mode. The
stability of this solution is governed by the higher-order
mode cquations, which, in the linear approximation,
reduce to a set of uncoupled, damped Lamé equations,
for which exact, analytic solutions have been found.
Such Lame equations exhibit parametrically excited un-
stable solutions in some regions of their parameter space;
these instabilities evolve with time into the fluxon oscil-
lations associated with the ZFS's.

The application of an external magnetic field provides
a mixing mechanism between the various mode equa-
tions, thus rendering the analysis less tractable. For a
sufficiently small field, however, we can once again
linearize the higher-order mode equations. ln this ap-
proximation, the essential effect of the field is simply to
add an inhomogeneous driving term to the odd-order
mode equations. This term is responsible for the appear-
ance of (odd-order) Fiske steps (FS's) in the I-V charac-
teristic of the junction.

II. MATHEMATICAL MODEL

The mathematicai model of the overlap-geometry
Josephson junction is, in normalized form, the perturbed
sine-Gordon equation*

¢xx -'¢ll - Sin¢=a¢l ’ﬁ‘ﬁxn il ) (la)
¢.v(0:t)=¢x([-,‘)=7] . {1b)

Here, ¢(x,t) is the usual Josephson phase variable, x is
distance along the junction normalized to the Josephson
penetration length, and ¢ is time normalized to the in-
verse of the Josephson plasma angular frequency. The
mcdel contains five parameters: a, 3, ¥, L, and 3. The
term in a represents shunt loss due to quasiparticle tun-
neling (assumed Ohmic), the term in 3 represents dissi-
pation due to the surface resistance of the superconduct-
ing films, y is the spatially uniform bias current normal-
ized to the maximum zero-voltage Josephson current, L
is the normalized junction length, and 3 is the normal-
ized external magnetic field, applied in the plune of the
junction and perpendicular to its long dimension. ln re-
cent years this model has been shown to describe 4 wide
range of experimentally observed Josephson phenomena,
often to a surprising level of detail.

A number of approaches have been employed i the
literature to solve Egs. (1). One of these, which hus been
found convenient in particular for the study of periodic
limit cycle behavior, is the Fourier-Galerkin approxim-
tion, i.e., projection onto a truncated series of Fourier
spatial modes whose amplitudes are unknown functions
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of time. To illustrate this approach we consider first the
case of homogeneous boundary conditions, i.e., =0 in
Lq. (1b). We take as a solution ansatz the form

v
dix.t)=3 &;(t)cos(jmx /L), 2
;=0

where Vs some finite number. The choice of this form
<tems from considering, at any instant of time, a
reflection of the function ¢(x,t) in the interval x =0to L
onto the interval x =0 to —L in such a way as to con-
struct a periodic, continuous, smooth, even function
with spatial periodicity 2L. In the limit N — « the rep-
resentation of Eq. (2) is exact; the practical usefulness of
this approach depends upon being able to obtain a
“reasonable™ description of the system behavior using a
relatively small value of V.

Inserting Eq. (2) into Egs. (1), and using the ortho-
gonality properties of the trigonometric functions, we
obtain the following set of ordinary differential equations
for the mode amplitudes ¢,(1):
bu+ady=y—(1/L) [© singdx

x =0

(3a)
B AL L} Yy + 0L b

=-2/L) [* sing costmmx /Lydx ,  (3b)
m=12,... N

n which w,, =zmnr/L, and ¢ is given by Eq. (2), and
overdots denote derivatives with respect to ¢,

111, McCUMBER STABILITY ANALYSIS

A McCumber solution of Egs. (1) is one without spa-
tial structure; in terms of the elastically coupled
pendutum-chain analog of the sine-Gordon system it has
all of the pendula rotating in synchronism *“over the
top.” In terms of Egs. (3) it is represented by a
configuration  having ¢y#0 and ¢,()=0, m
=1.2,....N. In this situation Eq. (3a) becomes

by +ady=y — sindg , (4)

and all of Egs. (3b) become identically zero. In the ab-
sence of loss and bias (a =y =0}, the rotating solution of
Eqg. (4) is exactly

door=2amit 7k k), (5)

where am is the Jacobian elliptic amplitude function® of
modulus A, with O<k < 1. For nonzero a and y we as-
sume that Eq. (5) solves Eq. (4) in the power-balance ap-
provumation, Le., we equate the average power furnished
by the hias supply, P, =y(dy), to the average power
dissipated. P, =a(é3), where angular brackets denote
2 time-averaged value.  Carrying out this operation
vields the following  expressions for the McCumber
hranch of the I-V characteristic of the junction:

{6a)
{6b)

deel k) mko
I ’r'h,):.'./l\/\‘(l\'),
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where K (k) and E (k) are, respectively, the complete el-
liptic integrals of first and second kinds.’

To study the stability of this solution we suppose now
that the ¢, (¢}, m =1,2,. .., N, are all small but nonzero.
Defining

N
€= Y ¢;{t)cos(jmx /L), M
j=t

we expand sing to linear terms as
sing = sin(@o+ €)= singo+ € cosdy . (8

Inserting Eq. (8) into Egs. (3), and utilizing once again
the orthogonality of the cosines, we obtain

do+ado=y — singg , {9a)

$,,. +(a+Bw?, )¢;,,, +w? G = —m COSPg ,

m=12,...,¥N. (9

The equation for ¢, Eq. (9a), is exactly the same as in
the unperturbed case, Eq. (4). Equations (9b) represent a
set of N uncoupled, linear, parametrically excited oscilla-
tors in which the ¢, term is the parametric driver. Since
these equations are uncoupled, they may be solved in-
dependently, which greatly simplifies the analysis.

Inserting the expression of Eq. (5) for ¢, into the gen-
eric member of Egs. (9b), we obiain explicitly, for the
nth mode, ti.e equation

Gn+la+Pwl g, +{wd +1—2snHe/k;k)]p, =0, (1O

where sn is the Jacobian elliptic sine function of
modulus k. Defining the new time variable, r=t/k, we
transform Eq. (10) into

$,, +k(a+Bw? )d;,, +[kHwd+1)—2k Zsn¥(r;k))d, =0,
(an

where overdots now denote derivatives with respect to r.
We may eliminate the first derivative term in Eq. (11) by
means of the standard transformation

¢,.(T)=y(1')exp[—%k(a+Bw,2, )}, (12)

under which Eq. (11) becomes
V+ kYol +1—Ha+Bwl P]—2ksnX(r;k)|y =0 .
(13)

Equation (13) is Lamé’s equation. A detailed discussion
of the exact analytic solution of this equation {in some-
what more generalized form) may be found in Whittaker
and Watson® (who attribute the original solution to lec-
ture notes of Hermite dating from 1872). Following
their discussion, we find two linearly independent solu-
tions of Eq. (13) to be

yo(n)=[Hlr—715)/0(7)] exp[ + Z(7)7] ,
y_(#)=[H{r+47)/0(r)]) exp[ = Z(7q)7] ,

(14a)
(14b)

where , 8, and Z are, respectively, the eta, theta, and
zeta functions of Jacobi,’ provided the constant =,
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satisfies the equation
en®trg k)ds¥(rg; k) —ns¥rg; k)
=—kYwl+1-Ha+Bwl)?]), (9

where cn, ds, and ns are Jacobian elliptic functions.’

Using various identities amongst these functions,” we
may simplify Eq. (15) to

sn*(rk)=1/k’~wl +Ha+Pwl) . (16)

The nature of the functions in Egs. (14) depends on
the value assumed by the right-hand side of Eq. (16).
We may a priori distinguish four possible cases.

Case 1: 0<1/k*—w} +Ha+ Bwl)?<1. Using vari-
ous results from Ref. 5, we may establish that rg is real,
0<r9<K(k), H/6 is real and periodic, and Z(r4)>0.
Hence, from Egs. (14} and (12), the stability boundaries
of Eq. (11) are given by

§=Z(ry)~Ltkla+Pwl)=0. an

8 < 0 implies stability; § > O implies instability.

Case 2: 1/k’—owl+La+ Bwl)*<0. We may estab-
lish that 7, is pure imaginary, Z(r;) is pure imaginary,
and H/8 is complex, but periodic. Hence, Re(d)
= ~ lk(a+Bw?) <0, which implies stability.

Case 3: 1< 1/k?~w? + Ha+ Bw? ) <1/k?: We may
establish that g is complex, Re(ry)=K (k), Z(r) is pure
imaginary, and H /0 is complex, but periodic. Hence, as
in case 2, Re(§)=— Ltkla+Pwl) <0, which implies sta-
bility.

Case 4: 1/k*<1/k?—w? +%(a+Bwf, P, ie,
a+fwl>2w, We may establish that 1o is complex,
Im(7q)=K (k’), where k' is the complementary modulus,
and f1 /60 is complex, but periodic; however, the nature
of Z{rg) is not (at least to us) completely clear. Howev-
er, we note that for *“physically reasonable” parameters
case 4 is unlikely: e.g., with a=0.05 and 8=0.02, case
4 is obtained only if L/n <0.0314 or if L/n> 126,
where L is the normalized junction length and n is the
order of the ZFS.

Consequently, in practice, the only physically relevant
situation is case 1. The computational procedure in-
volves fixing the parameters a, B, L, and n, and iterating
Egs. {16) and (17) until a value of k is found which gives
8=0. The stability boundaries in current and voltage
are then found by inserting this value of & into Egs. (6).
The necessary calculations may be carried out readily
using a programmable pocket calculator.

As a check on this theory we have compared our
present results with those obtained by Pagano et al.’ by
means of a perturbation expansion of Eqs. (9b) in the
high-voltage region of the McCumber curve. We have
also compared our results with those obtained by a
direct numerical implementation of Floquet theory.’
Agreement was found in all cases.

IV. SOME PARTICULAR RESULTS

Suppose we wish to establish a stability boundary at
Foo00e, weimpose 8(V =0)1=0. From Eq. (6b), ¥V =0
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corresponds to k=1. For k=1, both sn(ryk) and
Z (o) reduce to tanh(rg), so that, from Egs. (16) and
(17}, the condition for 8(V =0)=01is

[1—wl + Ha+Bwl ] 2= La+Bwl), (18)

ie, L/n=m. For L/n>m we have 8(V =0)>0, which
implies instability. From these facts one might be
tempted to infer that for all L /n > 7 the instability re-
gion in voltage extends from some maximum value, say
V,n, down to ¥ =0. Numerical calculations show this to
be almost, but not quite, correct: For L /n very slightly
greater than m, the instability region may consist of two
disjoint pieces separated by a region of stability. For ex-
ample, for a=0.05, $=0.02, and L/n=3.142, the
McCumber curve is unstable from V =0 to 0.287 and
from V' =0.589 to 2.39; but already for L /n =3. 143 the
intermediate stable region becomes unstable, and the in-
stability region extends smoothly down to V =0.
Another consequence of this theory is that instability
regions corresponding to the same value of a, 3, and L,
but different n, can overlap. This situation is illustrated
in Fig. 1, which shows the instability regions for
a=0.05, 8=0.02 and n =1,2,3, as a function of L. For
different values of a and 8 the form of the instability re-
gions remains quite similar to that shown, the major
difference being that the ‘‘peak points,” i.e, the pomnts
where the width of a region goes to zero, move to higher
voltages for smaller @ and/or 3. The numbers in
parentheses in Fig. | indicate which McCumber regious
are unstable in the various zones of the V-L plane. The
existence of overlapping instability regions might imply
the existence of a switching mechanism between different
ZFS’s, but a verification of this hypothesis lies beyond
the scope of a linear stability theory. In any case, the
above two observations suggest a simple explanation for
the frequently observed experimental fact that it 1s often
difficult to bias on low-order ZFS’s in longer junctions:
If the low-order instability regions overlap, and if the
lowest region or regions extend down to V =0, then 1t
seems not unlikely that in descending along the
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McCumber curve ane might switch directly to the zero-
voltage state, skipping over the intervening ZFS's.

\ Imear stability analysis can provide estimates of the
slaluiity boundaries along the McCumber curve, but it
cannot furnish the time evolution of an unstable solu-
tion. This question was addressed in Ref. 3, where it
was shown by direct numerical integration of Egs. (3)
how such an unstable solution evolves into the fluxon os-
cillation associated with a ZFS. The existence of such a
dynamic route is also suggested by the following analytic
argument:  Suppose in Egs. (3) that only one spatial
mode, say the nth, is excited, but that its amplitude is
not restricted to be small. In this case Eqgs. (3) can be
written explicitly as

{19a)
{19b)

&",+aa50=}' —Jold, ) sindg ,
8, +la+fwkid, +wlb, =—~2J($,)cosdy ,

where Jy and J, are Bessel functions of the first kind.
With the assumption that ¢y;=wt, with @ constant, Eq.
‘19b1 becomes just the equation derived by Takanakqs to
study the I-V profile of ZFS's. In fact, all of Takanaka's
results are reproduced by applying the Krylov-
Bogoliubov approximation procedure’ to Egs. (19).
Ssmdlarly, a twe-mode approximation to Egs. (3), iogeth-
er with the Krylov-Bogoliubov procedure, gives rise to
the results of Chang et al.,'® and an N-mode approxima-
tion to those of Enpuku et al."!

V. MAGNETIC FIELD EFFECTS

In the presence of an external magnetic field, 7340 in
Py 1, the solution ansatz of Eq. (2) is no longer ap-
propriate since it does not satisfy the boundary condi-
tons. The expedient normally employed in this situation
s to replace Eq. t2) by an ansatz of the form

N
dix,i=f(x}+ 3 @;(tycos(jmx /L), (20

j=0

where f(x) is some function that satisfies Eq. (1b).
Scveral different such ansiatze have been used by various
authors: Enpuku et al.'' use f(x)=7x. Watanabe and
Ishn'" use the procedure, due to Olsen and Samuelsen,'?
of choosing an f(x) that corresponds to two static virtu-
al fluxons placed outside the two ends of the junction.
Kawamoto'™ ' uses, respectively, in the two papers cit-
«d. a static fluxon lattice array and a static fluxon-
antifluxon array for f{x).

The basic mathematical requirement on f(x) is that it
must satisfy Eq. (1b). In addition, a *‘good™ choice for
S v presumably should be computationally simple and
should lead to a relatively rapid convergence of the trun-
cated Fourter series in Eq. (20). Since we are not awadre
of how to guarantee a priori this second condition, we
<hall, in what follows, use the Enpuku et al.'' ansatz,
£y nx. because of its simplicity. This choice [with
the substitution of Eq. (20) for ¢] !eaves the form of the
dynamcal equations, Egs. (3), unchanged.

The main effect of the introduction of the magnetic
ficld v that now there is, in general, always an excitation
of the spanal modes that does not any longer allow a
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separation of the junction dynamics into independent os-
cillators, as in the discussion leading up to Egs. (9).
Consequently, in order to make some analytical pro-
gress, we now assume that nL << 1, and we assume that
this implies that € in Eq. (7) is small. Expanding siné to
linear terms in small quantities, we may write Egs. (3) as

bo+ado=y —sin(go+7L/2) 21a)
Bm + (@ +Bwl 1 m +(wh, + cO5d)d
=(4nL /m*x)P, cosd,, (21b)

where m=1,2,...,N, and P,, =(0,1) for m (even, odd).

With the substitution ¢o=¢o+7nL /2, Eq. (21a) be-
comes identical to Eq. (9a). Equations (21b) differ from
Egs. (9b) only by the presence of the inhomogeneous
driving term (4qL /m*mr?)P,, cosdy, which is present
only for odd m. Since Egs. (21b) are, by construction,
once again linear, their total soiution is just the sum of
the homogeneous solution, i.e., that found in Sec. IIl
above, plus a particular integral. The homogeneous
solution shows exponential growth when the dominant
frequency of cos¢, is approximately 2w, (for any m).
Outside of the instability regions the homogeneous solu-
tion tends asymptotically to zero. The particular in-
tegral, on the other hand, is essentially a resonance hav-
ing a peak response when the dominant frequency of
cosdy is approximately w,, (for odd m). Thus, in the
context of the linear approximation, the appearance of
ZFS’s may be attributed to a parametrically excited reso-
nance of the multimode equations, whereas the appear-
ance of the odd-order FS’s derives from a directly excit-
ed resonance of these equations. A complete analysis of
magnetic field effects, and in particular an analysis of the
even-order FS’s, requires going beyond the linear ap-
proximation. This may be effected by perturbation
theory, as in Ref. 3, or else by a direct numerical in-
tegration of Egs. (3), in either case using the ansatz of
Eq. (20} for ¢.

V1. CONCLUSIONS

The linear stability analysis described above provides a
simple explanation for a number of frequently observed
experimental facts, e.g., the fact that it is often difficult
to bias on low-order ZFS’s in longer junctions. More-
over, it underscores the fact, first suggested by Chang et
al.,'® that both ZFS's and FS's might be described within
the context of a single, unified model. It should be not-
ed, however, that this analysis applies only to the mech-
anism of switching from the McCumber curve. There
presumably exist also other mechanisms for biasing on
steps (both ZFS's and FS's); the study of these will
presumably require other tools.
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Chaotic Behaviour of a Pendulum with Variable Length.
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Summary. — Tho Meluikov function for tho prediction of Smalo horseshoo
chaos is applied to a driven dawmped pondulum with variable longth.
Doponding on the paramecters, it is shown that this dynamical systein
undortakos hotoroclinic bifurcations which are the sourcoe of tho unstable
chaotic motion. Tho analytical results are illustrated by now nuticrical
simulations. Furihermore, using the averaging theorem, tho stability
of tho sublharmonics is studicd.

PACS. 05.45. - Theory and nodols of chaotic systoms.
I’ACS. 43.40.Ga ~ Nonlincar vibration.

1. ~ Introduction.

In this paper we investigate the hotoroclinic and subharmonic bifurciations
of o pendulum with variabloe length using the so-called Melnikov metlhiod ().
This mothod is a global perturbation theory which is able to analytically
predict the occurronce of homoclinie (heteroclinic) and subharmonic bifurca-

(*) Dresent addross: Mathomatics Dcepartinent, Queon Mary College Universily of
Loudon, Mile End Road, London, E1 4NS§, England.
() V.K. MecNikov: Trans. Moscow Malk. Soc., 12, 1 (1963).
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tions when some parametors of the system are varied. Further, it gives suf-
ficient conditions for the occurrcnce of transversal intersection between the
stable and unstable branches of the homoclinic (heteroclinie) orbits. When
such a transversal interscetion oceurs, it can be shown, using the Birkhoil-
Smale theorem (2), that the set of nonwandering points (2) contains an invariant
Cantor sct; moreover, some iterate of the Poincaré map restricted to this Cantor
set is equivalent to a shift on two symbols (i.e. a horseshoe) (3). This invariant
hyperbolic Cantor sct is structurally stable, this guarantees that we can
perturb it slightly without destroying it. However, it is important to realize
that this invariant sct is not an attractor. This means that the existence of
homoclinic (heteroclinic) points does not imply stablo chaotic behaviour. Never-
theless, it is quite difficult to predict the asymptotic behaviour of an orbit
beecanse the stable manifold behaves like an uncountable sot of saddle sep-
aratrices, i.e. two orbits starting on different sides of the stable manifold will
ultimately separate exponentially fast (this is equivalent to saying «sensitive
dependence upon initial conditions », .e. chaos).

Also the occurrence of the so-called homoclinic (heteroclinic) tangencies
in dissipative systems is very important. Works of Newhouse (*¢) and
Gavrilov-Silnikov (*7) indicate that there are infinite sets of «stable » periodic
orbits of arbitrarily long periods. These orbits are created through saddle-
node bifurcations and throughout the bifurcations they double their periods
repeatedly. Such bifurcations can be expected to oceur within chaotic regimes.
Morcover, we can expect an infinite number of periodic sinks for paramecter
values near the homoclinic tangencies. Several examples exist of systems for
which homoclinic tangencies occur (3). Thus we expect this wild behaviour to
be found in many other systems.

The paper is organized as follows: Sect. 2 describes the physical model.
Scetion 3 contains the heteroclinic Melnikov function. Section 4 deals with
the subharmonic Melnikov functions. In sect. 5 the stability of the subharmonic
solutions is discussed using sccond-order averaging. Finally, sect. 6 contains
the conclusion. Throughout the paper one can see how Melnikov’s theory
gives global results, which enable us to prove the onset of chaos for periodically
perturbed nonlinear systems like the pendulum with variable length.

() J. GucrENnemer and P. J. JloLyes: Nonlinear Oscillations, Dynamical Syslems
and Bifurcalions of Veclor Ficlds, Appl. Math. Sci., Vol. 42 (Springer-Verlag, Berlin,
1983),

(*) S.E. Newnouse: Tapology, 13, 9 (1974).

(Y S.L. Ngwnouse: Publ. Math. IIILS, 50, 101 (1979).

) 8. E. Nuwitouse: Leetures on dynamical systems, in Dynamical Systems, C.I.M.E.
Leetures, Dressanone, Italy, June 1978, Progress in Mathemalics, No. 8 (Birkhauser,
Boston, Mass., 1980), p. 1.

() N.K. Gavrirov and L. D' Sivicov: Math. USSR Sb., 88, 467 (1972).

() N.K. Gavmirov and L. P. Swxikov: Math, USSR Sb., 90, 139 (1973).
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We hope that it will be possible to make real exporiments on this system
as in other comparable systems (}) in order to test the physical validity of
Melnikov’s theory.

Stops in this dircction, that is, examples in which Melnikov’s theory has
been compared with real experiments, aro those desqribed in ref. (*14).

2. - The physical model.

We consider a simple damped pendulum with unit mass and variable length
in the gravity field, driven by an oscillating external torque. It ean be shown
that the equation of motion which governs this system is (%)

d

dz . dr .
() d—T(l’rl;)—{—lgmll.1._—1‘—l—T-+r, sin(en 1),

r. ry and o, being nonnegative constants. Here #(7) is the angular displacement
from the vertical at time 7. r i3 the damping constant, r; is the amplitude of
the oscilluting external torque with frequeney w, and g denotes the gravitational
constant. The length I(t) of the pendulum is assumed to vary with time =
according 1o

(2) l{t) = a 4+ b sin (wr), a>b>0, w> 0.

Introdueing 0 = bjax 1l and w; = gfa, egs. (1) ..l (2) lead to

d2r de
£:3) {1 = 2H sin(mT)) (-hz + 2wl cos(wr)a—;- +
+ mg(1 -+ 11 sin (1)) sina = "'—:i g—; -+ -(% sin (o, 1) .
(

"y M. BanrtucceLrl, P.L. CnristianseN, N. F. PrperseN and M. P. SOERENSEN:
Phys. Rev. 13, 33, 4686 (1986),

(% Z. G. GExcuev, Z. G. Ivanov and B. N. Torporov: TEEY T'rans. Circuits Syst.,
UAS-30, 633 (1983).

(') B P. Kocy, R.W. LEvey, BB, Poyxre and R. WiLke: Phys. Lett. A, 96, 219 (1983).
'Yy B.P. Kocu and R, W. LeveN: Physica D (Utrecht), 26, 1 (1985).

) ROW. Levey, B Powmre, C. WiLke and B. I'. Kocit: Dhysica D (Ulrecht), 16,
371 (19%85).

() FOMU AL Sacay and S8, Sastry: The complete dynawmics of the forced ssephson
junction circuit: the regiong of chaos, 1in Chaos in Nonlinear Dynamical Sys!. ns, cdited
by J. Cuanors (SIAM. Philadelphia, Penn., 19384), p. 43,

(M) ¥ O Moox, J. Cesusmano and DPoJ. Howwes: Physica D (Utrecht), 24, 383
{1987)

) T LeveCiviny and UL Asarpi: Leziond di meceaica rastonale (Zanichelli, Balogna,
1927).
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This equation is valid to order O(H). Dividing eq. (3) by w; and redefining
time t a8 t= w, 7, We obtain

(4) (1 1 2H sin (ﬂt))x +2 21 cos (i’_t)z +(1 +H sin(ﬁ’- z)) sin.r =
(O (OFY 1y (o
r ° rl . 0y
= — + = sin{—1¢].
myal 7+ mga? st (m,. )

Doty denote derivatives with respeet to the normalized time t. We now redefine
the parameters in eq. (4) according to

r r

=¢ff L=
=t = &h
1, (12 ! myal !
) 0 7] w
! 1 - i) - - T
— = 0, , —_= and —H =¢oH,
My My M,

where e 1. Assuming I < (wfw)H €1, HL ¢f and H <« oy, ¢q. (4) (after
dropping the bars) finally reduces to

(6) i 4 8in x = ¢[— f2£ + g, 8in (w;t) — SwH cos (wt)].

3. - The heteroclinic Melnikov function.

Equation (6) can be written as o system of two first-order ordinary dif-
ferential equations, i.e.

=1y,
(7)

J=—sinzx+ e — fL+ g 8in (wt)-- 2Hw cos (wt)r].

When ¢ = 0, system (7) becomes tho clas ical simple-pendulum equations

L=y,
(8) o

y=--sinzc,

which is known to he a completely integrable system. Indeed, cq. (8) 18 o
Hamiltoman system with the IMamiltonian given by

) "?
() o = - (1 = cosa).
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Besides, the unperturbed system (9) has tho following solutions:
a) Oscillations with cnergy #(z, y) < 2.
b) Complete revolution (rotations) with cnergy s#(z, y) > 2.
¢) Apcriodic motion with energy s£(z, ) = 2. .

The orbits corresponding to cases a) and b) aro periedie orbits.
In order to compute the heteroclinic Melnikov function (*19) it is necossary
to know the so-called heteroclinic solutions (2) of the unperturbed system (8).
They are given by

T(t — ) = £2 tg~' [8inh (¢ — &,)],

(10) -
ZA— ) =gt — &) =+2scch (t —1,).

This case corresponds to case ¢) described above. The Melnikov function
for system (7) is (%)

(1) D)= — o) (— BTt — t) + 01 in (@, ) —
— 2Hw cos (wt)F(t — t)] dt .

Making the following change of variables in formula (11): ¢t -t + #,, wo
obtuin

to
(12) M*(!o)l=fg(l) {— By(t) + o.sin[w, (¢ + t)]—
— 2w cos [w(t + )] F(t)} dt,

which is more convenient in calculations. Substituting formula (10) into for-
mula (12) and making the calculations, wo arrive at the following result:

1) H(,): = — 88 + 27, sin {w,t,) sech (gw,) -
T
— S H cos (mt,) cosech (; (u).
If sin w,t{,=+1 and cos wt, = — 1, corresponding to the ratios w,/w =

= (1 L+ 48)/(2 + ) and o,/ = (3 4+ 48)/(2 + 41), where s, ¢ are integers, the

(') B.D. Gurernseaxy and . J. Hlowmes: Homoclinic orbits, subharmonics and global
hifurcations in forced oscillations, in Nonlinear Dynamics and Turbulence, cdited by
ti. BangeNnrarr, G. Iooss and D. D. Josernt (Litmmann, London, 1983), p. 172,
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Melnikov function will have infinitcly many zeros when

(14) 1> cosh (I,wl) [{f 4 Hw? coscch( )] H
the corresponding condition on H becomes
(15) H>S’—“h—(€;/ )[ﬂ "‘sech( )]

The cqualities in formulac (14) and (15) characterize the onsat of the
heteroclinic bifurcations with an approximation of O(1) for sufficiently small e.
Furthermore, the striet inequalities (14) and (15) characterize the existence of
transverse heteroclinie intersection points between the loeal stable and unstable
branches of the heteroclinic orbits (10). It may be shown (2) that, if the stable
and unstable branches of the heteroclinic orbits (10) intersect transversely
onee, then they interseet each other infinitely many times. The presence of such
intersecting orbits implies that the Poincaré map has the so-called Smuale
horseshoe (2). A Smale horseshoe containg a countable set of unstable periodic
orbits, an uncountable sct of bounded, nonperiodic orbits and a dense orbit.
It should be noticed that even though the Smale horseshoe is extremely com-
plieated and contains an uncountable infinity of nonperiodic or chaotic orbits,
it is not an attractor. However, it can exert a dramatic influence on the be-
haviour of orbits which pass close to it. These orbits will display a scnsitive

6 16
Rr 12
Q
< 8 =38
A I3
0 65 T0 15 20 o 1.5 0 7 ¢ —
Fig. 1. Fig. 2.
Fig. 1. - Heteraelinie bifureation curve in the {my, o))-plane (eq. (14)). Smale horseshon

chaos above eurve, I = 0.2

Iig. 2. - lleteroelinie bifureation curve in the (wy, IT) paramcter plano (vq. (1)
{inale horseshon chans above eurve. o/3 = 0.2,
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dependence on initial conditions. Thus system (7) has a Smale horseshoe in \
its dynamiecs when inequalitics (14) and (15) are strictly satisfied. Tho bi-

furcation curves in parameter space which separate regions with and without

Smale horseshoo chaos are given by the cqualities in formulae {14) and (15).

These curves are shown in fig. 1 and 2, where g,/x and H/« are depicted as func-

tions of w,. In both figures we have chosen the ratio w,/w = (1 4 4¢)/(2 + 41)

with s=t=1.

4. — Subharmonic Melnikov functions.

In order to apply the subharmonic Meclnikov functions (?) we need to know
the analytical expressions of tho periodic solutions of the unperturbed problem.
In fact, tho subharmonic Melnikov function for system (8) is defincd as
follows (3):

(16) ety = [ME®IAgla (), (¢ + )t

Ilere g*(t) is a periodic orbit of the unperturbed system with period T'= =
= (m/n)T, m and n relatively prime, T is tho period of tho perturbation eg.

For system (8) we bhave two qualitatively differont periodic solutions:
the oscillating and tho rotating solutions. The analytical cxpressions are

z,,(t — &, k) =+2 sin~ [ksn(t — ¢, k)],
(17)

Youlb— bo, k) =F2ken(t — &, k),

for the oscillating case, and

'Tro(t_to, k) = i 2 Sin.-1 {Sn [ln(t I to)’ %]} y
(1%) ]
Yult —t, k) = =+ 2kdn [k(t——to), Z:] ,

for the rotating case. We noto that ¢ 08» and «ro» stand for oscillating and
rotating, respectively.

In ¢qgs. (17) and (18) sn, en and dn are the Jacobi clliptic functions, and %
is the elliptic modulus (7). Morcover, for system (7) wo sce that the poriod

(") .1 Byro and M. D. FrienMan: Handbook of Elliptic Integrals for Eugineers
awd DPhysicists (Springer-Verlag, Derlin, 1971).

16 - Il Nuovo Cimenlo B.

e et ot st e s b b
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of the perturbation is
(19) T'=pT = qT,,

where @,/w = pjq with p and q relatively prime and where T, = 2xjw,, 1. =
= 2n/w ware the periods of sin w, ¢ and cos wt, respectively.

We now compute the subharmonic Melnikov functions for these resonant
periodic orbits. The resonance conditions are

m m In m m 2
20 dk)=~T=—p— dK(k)y=—T = —q =
(20) *) n w? o’ (k) n e
for the oscillating motion (k< 1) and
SK(1/k 2: 2K(1/k 2z
(21) O _my _my2z 2RO _my_m 23
K n noomy k ” n o oo

for the rotating motion (k> 1).

In (20) and (21), m and n are relatively prime natural numbers and K (k)
denotes the complete elliptic integral of the first kind (V).

The subharmonic Melnikov function (16) reads

(22)  MZ() = [yt B Bty 1) + e sin (et + wyb)—
0

~ 2Hw cos (ot + why)y, (¢, k)]dt
for the oscillating case and

mr

(23) A}I:;/"(to) =J.:1/ro(t, k) — ﬁyro(t’ k) 4 oy 8in (wy t + wy b} —
°

— 2Hw cos (wt + wly)y, (L, k)]d¢

for the rotating case. Now inserting (17) into (22) and (18) into (23), respee-
tively, we get for the two subharmonic Melnikov functions

mr mr
24) Mo = — 45k2jcn=(t, k) dtj;2glkfsin (@t 4+ @, o) en(t, k) dt +
0 1]
mT
- 8Hwk=fcos (0t & wlo)en?(t, k)t
]
m7T mr
(20) M) = — -(ﬂlc’f(in’(/.‘t, -;—)di 4- ‘..'g,/«fsin (gt 4 ey ty) dn (M, 7‘) dt -
0 ]

mT

1
— «*/\"”u)J‘COS (el + sty dn? (k!, Z)‘“ .

0




CHAOS IN PENDULUM WITH VARIABLE LENGTIL 237

The second integral of expression (24) vanishes except for n =1 and odd
mp, while the third one vanishes except for n =1 and ¢ven mq. In these
¢i808 we obtain

(26) U (ty) = — 16B[E(k) — k'K (k)] £ 47p, sech (w, K'(k)) sin (@, t) —
— 16nlw? coscch (wkK' (k) cos (who) -

For the rotating motion we have that the sccond and third integrals of
expression (25) vanish except for n = 1. In this case we obtain
o WK (K
(27) MMty = — 8B k) 4 2oy sech (‘—'—V—L/—_( / )-) Sin (o ty) —

M

— 8 I w? cosech (‘il—-{/f[ﬂ

) cos (wty) .

In (26) and (27), K'(k) = K(k'), and k' is the complementary modulus,
which is related to k by k'2 = 1 — k? (™). Rearranging cgs. (26), (27) we find
two necessary conditions for the ocewrrence of subharmonics of periods mT
with an accuracy of O(1); these conditions are

123) 011,00 COSI (0, K (1)) [4;@ (B(k)— k2K (k)) — 4l w? cosech (m]\"(.’;))]

12 16
2}
8 b
Ky 2
3 Saf
- Q
L -
—/ 6}
0 1 2 w, 3 0 0.5 1.0 1.5 2.0 w, 2.5
i 3. Tig. +.
i, 4 - Subharmonic s for the oscillating case and heteroclinie bifureation curve

mothe (o, o) paraineter plane (eqs. (28) and (14)). Solid curve: mp = 3, mqg = 2.
Dashed curves mp = 6, mq = 4 aud (overlapping) mp = 9, mq = 6 and (overlapping)
heterpelinie curve. Hff = 0.2,

i, 4. - Subharonie curves for the rotating case and heteroelinie bifurcation curve
m o the (mwy, py) parametor plane {eqs. (29) and (14)). Solid curvo: (mp, mg) = (3, 2),
i, 4y, (9, 6) and heteroclinic eurve overlapping. I/ = 0.2,
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and
(29) 03,0 COSI (&’f”ﬂ) [4£k E (71‘-) — 4 Hw? cosech (ai}il_/k_))] .

The subharmonic bifurcation curves corresponding to formulae (28) and (29)
are shown in fig. 3 and 4, respectively. In fig. 5 and 6 we show enlargements
of these curves.

5.6 10.70
5.2r 19.6) 10.681
enlt eV
(8.4)
e Vo8 /ﬂ o
3 3
450 L1066 098
ay @ 1,ro \ |
!6.&)/ﬂ e, v
e 1, ro. \. oz _".,_—._‘-—“
u8f a2 1064F _ oK
0 aslP s \gf/p
L6 . 1062
1.500 1,525 wy 1.550 2.000 @, 2.001
Fig. b. TFig. 6.

Tig. 6. = Enlargement of fig. 3 in the region 1.60 < w,< 1.55. (mp, mq) indicated in
the superscripts.

Tig. 6. — Enlargemont of fig. 4 in the region 2.000< ,<2.001. (mp, mq) indicated
in the suporscripts.

Similarly, we can obtain the expressions for the occurrence of subharmonics
in the (w,,H) parameter plane. They are the following ones:

(30) n.,.>"1’1h—(;¥‘~""~” [g (E(k) — k'* K{k)) —%sech (w,]{’(k))] = Rimrma
)

sint m I (1/K)) [k ., -t .
(31) H,> 9_11}_1((2 —(——/—))/-——) [@ E(1/k) ——-?—; sech (Ci)'!‘vk“—/]'—))] = J{mmmo

o? k14

As above, the subharmonic bifureation curves corresponding to formulie
(30) and (31) arc shown in fig. 7a)-d) and fig. 8, respectively. In fig. 9 we show
the enlargement of the rotating case in the interval 3.000 <w, < 3.001.

In the oscilluting case the resonance condition (20) can be solved for cach
choice of mp, mq with 2amp/nw, > 27 and 2amq/nw > 27. Tho curves in fig. 3
and 7 are restricted accordingly.
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Formulac (28)-(31) converge to formulae (14) and (15), respectively, be-

cause
(32 }lim MO(t) = lim Ma(,) = M(t,) .
m—>o m—>
12 12
a) b)
8 8
(34 &
L L 1 N A
a 0 2 4 6 0 2 4 6
T 12
¢) o)
8 8
A 4
4 6 0 2 4 6
Wy

I'ig. 7. — Subhiarmounic curves for the oscillating case, (@)-c)), and hoteroclinic bifurca-
tion curve, (d)), in the (w,, II) paramoter plano (eq. (30)) for mp = 3, 6, 9 and mq =

= 2,4, 6 and ogs, (15) and (30), respectively. ¢,/8 = 0.2.

16 .
[

3

4

4

]
!
!

ot
€

Fig. 8. - Subharmonic curves for tho rotating case and hetoroclinic bifurcation curve
in the (w,, Z) parameter plano (egs. (31) and (16)). Solid curve: (mp, mq) = (3, 2)
dotted curve: (6, 4); dashed curve: (9, 6) and hotoroclinic (overlapping). g,/8 = 0.2.
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Fig. 9. — Eulargement of fig. 8 in the rogion 3.000 < w, < 3.001.

The figures demonstirate the convergence is extremely rapid.

From this it follows that tho heteroclinic bifurcations are the limit of o
sequence of subharmonic saddlesnode bifurcations.
define the convergence rates as

Furthermore, we can

. lc(mq,mv) —_ R\'mq—-(,mv)
6 = lim

mag—® ]g(ma+l,mp) — ]z(mo,m»)

and

Rima,mp) ___ RAma,mp—~1)
A= lim
t mlq—-om ]c(mq,mp-f--)__

Rima,mn 4

where ¢ = 2 in the oscillating regime and ¢ = 1 in the rotating one. Making
the caleulations we find that § = exp [22/w] and &, = exp [27/w,] in both
regimes.

2

plt)
o

tj ) I

A

. X b)
7450 ¢t 7500 7300
Il 10, - Nmnerical solution of oq.

(6) for 2sin~tk =146, =0
amp/2I(k) and o = amq/2H (k) with
by Il = 0.0143.

7400 t 7500

my =

mp =1 and mq = 2. a) II
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The previous predictions by Melnikov theory for subharmonic bifurcations
were tested by a numerical simwation. For parameter values 2 gin-t k = 1.6,
g =01, o, =01, w, =amp/2K(k) and w = amq/2K(k) with mp =1 and
mqg = 2, eq. (30) yields the critical value I, = 0.0147. Figurc 10 shows the
numerical solution to eq. (6) for the same values of k, 8, 0,, w, and w. For
[ = 0.0144 we get the stable subharmonie solution shown in fig. 10a), while
a deerease in H to H = 0.0143 makes this subharmonic solution unstable as
seen in fig. 100). The prediction by Melnikov theory thus only deviates by 3 %,.
Mowever, it i3 important to notice that wo eannot use subharmonic Melnikov’s
method for proving that the stable and unstable manifolds of the hyperbolis
orbits interseet transversally. This is beeanse the subharmonic Melnikov
funetion is exponentially small and the remainder in the perturbative series
becomes important (%).

5. — Stability analysis of subharmonic orbits.

In this scction we shall use the following perturbation method (¥39) in
arder to get information on the stability of the subharmonie orbits. We consider
the perturbed system (7); beeause it is a Hamiltonian system when ¢ = 0,
a symplectic change of co-ordinate to action-angle variables can be found:

I=1I(z,y),
(33}
0 =0,y .

Using transformations (33) system (7) becomes

ol
1250(8;1—/ =&l(l,0,1),
134) '
a0
6 =) + 3y = Q) + G, 0,1),
where
(33) g=— B+ o sinw,t — 2Hw cos (wt) 2

iy the perturbation, and
o Un

(36 sy = - = -
3) {{%) AT | = T

is the angular frequeney of the unperturbed orbit [a2(b — &), y2(t — 1,)] with

(") I. HloLMES: Physica D (Utrecht), 5, 335 (1982).
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action I% = I[x*(t — &), y*(t — %)], and

mq
n

(37) T4=Z';—pT1= T,.

If wo now consider small perturbations of a resonant orbit T#, we can ap-
proximate the variations of the action-angle variables as follows:

{I=I~+«/zh<t),
(38)

6= Q=)+ o(t).

Making tho derivatives with respect to time, we obtain

h = e F(I%, Q51 4 @, t) 4 e (I3, Qat + @, )k + O(ehy ,
(39) i
@ =+eQ'(I*)h -} ¢ [G(I“, Qat + @, t) + 27(19) -;-] + 0(ehy,

.
-

where the primes denote 9/3I
If Q’(I*) is bounded we can apply the averaging theorem (*) for Ve suf-
ficiently small. This yields, with an averaging transformation (k, @) — (&, ),

"

¢=+VEQR+ 5[92" + @T(q?)] + 0(eh)

(40)
- 1 Fp—
R =V 3= Mr(§]Q2) + eFo(@) B+ 0(eh)

where ¥, and G, are the averages of ' and G. For more details, seo (1)

Let us start with the action transformation: In order to deduce tho expres-
sion of the action variable I it is convenient to write the Hamiltonian 5# = #(z,
¥) = y?2 + (1 —cos x) as & function of tho elliptic modulus. Both in the
oscillating case and in the rotating onoe we obtain

(41) H(k) = 2k,

where 0 < k<1 and k>1 in the oscillating and rotating cases, respectively.
Using formula (41) and standard methods for the computation of the actron

(") J. K. HaLE: Ordinary Differential Equaticns (J. Wiley & Sons, New York, N Y.,
£969).
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variable (*) wo arrive at the formulao

) It = Lu(k) == (B(k) — KK ()]

for the osecillating case, and

(13) 1% = I (k) = %kE(J/k)

for the rotating one.
The expressions for 2(I¢) given by formula (36) aro

Ay T O _ D
) QulI®) = sK(k)  mq mp
wnd
. nk w wy
(45) Qullo) = e = = =2

where k is given by relationships (20) and (21), respectively. Using the
identity £'(I=):= 3(I)[dI|,,» and formulae (42)-(45) wo obtain the following
expressions:

mB(k) — k2 K(K)]

() Qull®) = ——irim
and

. Ve KB [R)

(47) Q1% = 4_—k'*K*(1/k)>0°

Further, we have Q"(I*): = 920(I)/dI%,.,- and from this we get

ey A [ERE)—RPE(R)
(%) Qoull®) == F5eL k") dk[ k* kI k) ]
and
{ L] o ___—_—ﬂ’ _d_ M
(19 OulI®) =~ 5raM) aF [k"m(l/k)]'

Finally, from (26) and (27) we obtain

(50) M (p[R%) = Mp(@/Q%) = — 168[E(k) — k"> K (k)] +
+ 470, sech (w, K'(k)) sin (mpp) — 167xHw?* cosech (wK'(k)) cos (mgp)

(¢%) 1. PrrcrvaLl and D. Ricuanrps: Introduction lo Dynamics (Cawmbridge University
Press, Cambridge, 1982).
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and
(71) M (p[Ra) = Maip(0e) = —8BiE(1/k) +
-+ 27, sech (m' hl“-/liv) sin (mpp) — 8allw? cusech (O)K I(»]i)> Cos (mge) .

Wo first consider system (40) to the order O(v'z), and dropping the bars
we get

(32) P=VEQIN, k= «/ o MOy 109
for the oscillating case and

! 3 - l
) b =VEQulINh, k= e Mig/Qn

for the rotating one.

Such systems have fixed points at A = 0 and at the values of ¢ for which
MHo@[2%) =0 and MI{p/RY) , respectively. For both systems, such
fixed points are saddles, if aM"'/orp> 0, and centres, if oM™ /S < 0.

1.0
h

0.5

A

> oo

05}k
0 | I
b) ¢ N
-1.0 1 2 1 F |
0 1 2 ® 30 1 2 ? 3
I'ng. 110 -~ Phaso portraita of system: (52) for the oscillating ecase with 2sin-'1 =

=16 =01 0=01 ¢=1 mp=1 and mg=2. a) I =0.002< ""“"”"":
= 0.014705 (eq. (28)). No periodic points. b) {1 = RI7®™ Doubly dege n(r'\tL points.
ey I - 003 > R2T™0 Saddles and eentres.
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1.0
h

WS =
y S~

-1.0 —_ L 1

0 1 2 9 30 i 2 p 3

Fig. 12. - Phase portraits of system (53) for the rotating case with &k = 1/0.95,
=01 0 =01 e=1 mp=1 and mg=2 a) U =0.02< BT = (.114 642
(vq. (29)). No periodic points. b) I = R{™™. Doubly degencrato points. ¢) II =
- .2 > RPem Saddles and eentres.

In fig. 11a)-c) and 12a)-¢), we show the phase portraits of systems (52)
and (33), respectively, corresponding to the choices of mp = 1 and mq= 2,

RS P oty

amdd the plus sign in formula (50), which gives
i -
M (/%) = — 16B[E(k) — k'* K (k)] + 4n0, sech (w, K'(k)) sin ¢ — I ;
— 16aHw? cosech (wK'(k)) cos (2¢), :'r
'
and corresponding to the choices of mp = 1, mq = 2 and the plns sign in for- ’.'i'.»
muli (51), which gives t
15

W (g [023) = — SAEEO [E) + 2mp, sech ("—)‘—]‘I;(]/I)) sing —

— 87mtH w? cosech (a_ﬂ(_él/_k_)) cos 2q .

These figures show the three cases of H,, and H, less than, equal to and
Lirger than the values of the corresponding subharmonie bifurcation curves.
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Then, according to the averaging theorem () we have that the full system (7)
has saddle-type orbits near the saddle points of (52) and (53) and periodic orbits
near the centres.

Furthermore, we noto that systems (52) and (63) are Hamiltonian systems
with Hamiltonians given by

I(I ’

f=w{ M+wﬂ

where

1
V=— Q-ZJ.M"(q)/.Q“) de,
i.e. explicitly

Q2udle)y, L

(54) m—f{ lemwwmw¥

F 4mp, sech (m, K'(k)) ~

CEZZP‘P) — 16aHw? cosnch (wK'(k))

sin (mfﬂp)]l
my !

(55) afm-v”{g"l’

! S ' I ln
F 2720, sech (anK {(1/k )) cos (mpp) — 8xHw? cosech (a)K 1/ ) sin mqrr)]}

1
— [- 8BkE(1[k)p F

k mp k mq

Since systems (52) and (563) are structurally unstable, it is necessary to
take into account the O(e) terms in system (40), where

my
T 1 -
1",,.((}‘) = m_T I (.Qat + Py Ia, t) dt

and
mr
—— 1
Golp) = — fG(Qat + @, I, t)de
0
with
a
P, It = F(O 1,0,
g, 1,t) = 27;}3 [— Bz + o, 8in(m,t) —2Hw cos (wt)Z]z
and

(16, I,t) = __8_ [—— Bz 4 0, 8in (o, 1) — 2 M w cos (wt)Z] .
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Making the calculation we obtain

FIg) = — Bldd, + BJY £ oi(AJ, + BJ) sin (mpe) — H(AJs + BJ3) cos (mqy)

and

Go(p) = £ s (Ady+ BJy) EE,L};QL) + H(AJy+ BJ)) s"‘,(nmq(P) .

Ty = Jy(m) = 16 [E(k) ~ k" K(k)] , Ji= T,
mpaXK'(k , d
Jz=Jz(m,wx)=4nsech—-€m—_—k-)——), J.=ac.(]“
mqnK' (k) . d
Jy = J3(m, w) = 16aw?* cosech —g—]T(l}T' , Ji= E%J: ,
4 &
A = A(m) =._Q~°j)(I mP o,
4Ty

R =B(m)=87?nlp_k>

in the oscillating case, and

Fiy) = —A(AK, + BIY}) + oi(AK, + BK;) sin (mpg) —
— H(AK,+ BK;) cos (mge),

TR , CO8 . 8
() = + ou(AF, + BEY L,‘%f?ﬂ’ + H(AK, + BI) ‘—‘-‘1,%—"@
with
- Al i d
]|| = I(l(7n) =8k]'/(]/k) 3 ]‘l=aTI(l,
. . "(1/k ,
I, = I (m, w,) = 27 sech % ’ Ky= d—%“Ks ’
Iy = Ky(m, w) = 8nw? cosech T%g—;k])”c) , Ky = -(;l—k](, ,
A = [l("l) = —m_p‘.gi(;l_a.)< 0 ,
Y (ON
B =Bm= -
8ampk

in the rotating case.
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The traces of the linearized system (40) read
(56) Tr, (L) = ~ ef[AJ, + BJ,)
in the oscillating ease, and

(57) Tr,, (L) = — ¢f[AK, + BEK,)

in the rotating one.

They are both constants. Thus according to Bendixon’s criterion (%) it
follows that system (40) cannot have closed trajectorics.

In fig. 13a)-d) we show the phase portraits of system (40) in the oscillating
case, In the rotating case one obtains analogous results.

~0.5¢

AN

-1.0 n 1 i
0 ] 2 @ 30 2 ® 3

> oo

Fig. 13, - DPhase portrails of system (40) in the oscillating ease with 2sin 114
=16, =01, o =01 e=1, mp=1 and mq=2. a) H = 0.002 < i7" .
= MO14706 {eq. (281, No periodie nointz, &) 7l = KIP™0 Donbly degenerate poinis,
¢) Il = 0.03> Rm"»™)  Sink and saddle points.

It is important to note that these results are not uniformly valid. Indeed,
the factor £2(I2) becomes unbounded as « — oo, Therefore, as a inereises,
averaging is valid in smaller and smaller regions 0 < e < g(m).
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6. - Conclusion.

In this paper we hiave investigated the onset of chaos for o perturbed pen-
dulum with variable length. We show that this system exhibits Smale horseshoo
chaos for cortain ranges of parameter values. The bifurcation diagram shown
in fig. 2 gives some insight into the behaviour of the systemn. Ono can sce that
when w, goes to zero we do not get Smale horseshoe chaos. This is in agreement
with the well-known classical phenomenon that the action variable is an adia-
batic invariant for this system when its length is varied sufficiently slowly.

Furthermore, by using the subharmonic Melnikov’s functions we have
obtained the bifurcation diagrams for the oceurrence of subharmonic orbits.
These subharmonic bifurcation curves converge (rapidly) to the heteroclinic
bifurcation curve. This result implies that the heteroclinic bifurcation is the
limit of a countable sequence of subharmonic saddle-node bifurcations.

Moreover, making use of the averaging theorem, the stability of the sub-
harmonics was investigated. Indeed, according to the averaging theorem the
equilibria of the averaged system correspond to cycles of the perturbed system.
We have found that the fixed points of the averaged system are sinks and
saddles which are created through saddle-node bifurcations. This implics
that the perturbed system, at least on a time scale of 1/e (for ¢ sufficiently
small), has a hyperbolic periodie orbit of the same stability type as the fixed
points of the averaged system.
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® RIASSUNTO

In questo articolo si applica la teoria di Meclnikov per predire analiticamoente la pre-
scnza di caos (Smale-horseshoe) in un pendolo con lunghezza variabile in presenza di
dissipazione ¢ di un termine forzante. Si mostra che tale sistomna dinamico presenta
una cascata di biforcazioni eterocliniche quando i parametri che entrano nell'equaziono
differenziale elio lo deserivo sono variati. La presenza di queste biforeazioni & lasorgento
del moto caotico. Si studia inoltre la stabilitd delle subarmonicho facendo uso del teo-
reina della media temporale.
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Note

Split-Step Spectral Method for Nonlinear
Schrodinger Equation with ‘Absorbing Boundaries

By application of spectral methods [1] the computational solution of nonlinear
partial differential equations has been improved in accuracy as well as efliciency in
particular on vector computers. Fourier spectral methods [2] require periodic
boundary conditions often in contrast to the actual physical problecms where
modelling by outflow boundary conditions may be appropriate in many cases.

In this note we consider the cubic nonlinear Schrodinger equation (NLS) which
occurs in nonlinear optics [3], decp water wave theory [4], plasma physics [5],
biomolecular dynamics [6], c.g. The cquation can be solved numerically by the
split-step Fourier method (SSFM) described in [7, 8). We gencralize the method
by including an additional term in the partial differential equation with the effect of
absorbing outgoing radiation at the boundaries. The applications of SSFM requires
periodic boundary conditions. However, the drawback of these conditions is
climinated by our new method.

The NLS with periodic boundary conditions is given by

i, + g+ ) u=0, (la)
u(—=L/2, )=u(l/2, 1), and u(=L2, y=u(L/21) {1b)

—-LR2<x<Lf2, —n<t<oo, and u=u(x, ()

The SSFM in its original form consists of two steps. First, the nonlincur part of
Eq. (1a), i, + |u[? u=0, is solved by mcans of the simpic wave solution w(x, )=
u(.x, 0) exp(ifu(x, 0)1? t). Second, the lincar part of Eq. (1a), iu, + }u, =0, is solved
by means of Fouricr transformation.

Our modilied verion of NLS is

iul+%”\'\'+l"'2u+i‘l'(x) u=0, (?.il)
u(—L{2, t)y=u(L/2,1), and wu{-L/2, )=uJ(L/2,¢), (2b)

where the real function y(x) in the absorbing term, iy(x) u, is given by

y(x) = yo(sech?[alx — L/2)] + sech?[a(x + L/2)]). (2¢)

As scen in Fig. | we introduce smooth losses at the boundaries x= —L/2 and
x = L/2 through this choice of ;.
501
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ol Yo 1.
Ta’ l a™
I:LIZ 6 x= L2

FiG. 1. The absorption function y(x) (2c) introduccs losses in the ncighborhood of the periodic
boundarics at x = +L/2. Parameters 7, and z in (2c) must be chosen such that the scattering from the
“absorption walls,” sech?{a(x F L/2)], is small.

In the corresponding new gencralized split-step method we first solve the non-
linear part of Eq. (2a)

i, + (a2 @+ iy(x) i =0 (3)

for which we have found the exact solution
ii(x, t)=d(x, 0) exp{ilii(x, 0)|2 (1 —e~%")/2y —y1} (4)
by inspection. Second, the linear part, i, + §u,, =0, is solved in Fourier space by
Ok, 1y = Ok, 0) exp{ — ik*1/2}. (5)

Also in our generalized SSFM the solution is advanced one time step 4t by (i)
obtaining f(x, 4t) from u(x, 0) by mcans of (4) with #i(x, 0) =u(x, 0), (ii) inserting
the Fouricr transform of i{x, 4r) as Ulk, 0) in (5)

Ok, 41y = j"‘ fi(x, 41) exp{ikx} dx exp{ — ik d1/2}, (6)

.

and (iii) transforming the resulting l7(k, At) back to x-space
I = =& . .
u(x, 41) =ﬂj B Uk, 41) exp{ —ikx} dk. (7)

This method is second-order accurate in 4t and all orders in dx and is uncon-
ditionally stable according to lincar analysis [8].
Figure 2 shows the time devclopment of the initial condition

u(x,0)=(1+0.6 cos 7x) sech x (8)

in two cases: (a) subjected to the classical NLS dynamics given by (1) and (b) sub-
jected to the NLS dynamics with absorption given by (2). The initial condition (8)
desribes an NLS 1-soliton [9] with radiation superposed. In case (a) the radiation
cannot escape from the system owing to the spatial periodicity and eventually
destroys the l-soliton. In case (b) the radiation is essentially absorbed already at
the first passage of the boundary leaving the i-soliton undisturbed.
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Fi. 2. Evolution of NLS I-soliton {8) with dynamics given by (a) classical NLS (1), (b} NLS with
absorption (2). Parameters L =12.8, y, =20, and a = |. Resolution 4x=0.1 and 41 = 0.005.

The difference between Figs. 2a and 2b demonstrates the importance of adding
absorption in the NLS equation. This new trick makes the SSFM much more
applicable to the physical problems mentioned in the introduction.
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Observaticons of real solitons

Peter L. Christiansen

Sarnrons are localized nonlincar waves
that can propagate and interact like par-
ticles  Theoretical studics show that
phenomena such as water waves, light
pulses i optical fibres, magnetic-flux
guanta in superconducting devices and
coherent excitations of biomolecules can
be soltons. Computer simulations show
that selitons can form in the presence of
such rcalistic features as frictional loss
mechamisms, external driving forces and
thermal fluctuations. The solitons will
cust  under these circumstances for
sutficiently tong to be important fcatures
in the time cvolution of the wave excita-
uons  Experimental  demonstrations
of soliton dynamics. however, are still
scarce FPherefore, two recent papers by
Fupmaki, Nakajima and Sawada' and by
Wu. Wheatley, Putterman and Rudnick’
showang solitons in rcai systems arc most
noteworthy

Ihe work by Fujimaki er al. deals with
cothaon of solitons on an  clectronic
losephson transmission line (JTL). 1.8 mm
long. composed of a scquence of 31
discrete Josephson junctions (interleaved
superconducting and insulating layers). In
the continuum version of the JTL, the
fosephson effect (superconducting elec-
trons tunnelling through the insulating
Livers) results from the weak coupling
hetween pairs of superconducting thin
tilms This overlap geometry is modelled
very accurately by the sine-Gordon cqua-
non  originally developed by particle
physicists. In 1962, Perring and Skyrme'
showed that this nonlincar partial differ-
ential cquation possesses solutions that
they termed “kink™ and ‘antikink®, after

1
(ﬁmv[-\;] [—MDL‘\S } fsoz1 Al

[ -0

e ALY Jamll G2 |

tig. | Simplihed block diagram of the fluxon
cxpenment of Fupimaki er al. The fluxon and
antifluxon (cross and dot, respectively) are
injected nto the Josephson transmission hine
(311, made of 31 Josephson junctions, cach a
1 x Jdum’ sandwich of two superconducting
hims and onc insulating) by the fluxon gencra-
tors FCrf and FG2 Electronic delays EDU and
b2 delay the fluxon and advance the anti-
Nuxon by A1, cffectively shifting the system
A1 leftwards along the JTL The sampler
records the flux density at the midpoint of the
711 after a vanable mechamical tme dJdelay
(MDD of AS The whole process is initiated
when the control current /. exceeds a critical
value (Fromorefl)

b —

T

their shapes, which can propagate and
intcract with cach other complctely non-
destructively, suffering only phase shifts
as a result of the interaction.

In certain respects, Perring and
Skyrme’s paper forcshadows the pioncer-
ing work by Zabusky and Kruskal on the
Korteweg—dc Vries equation (originally
formulated to describe shallow water

Fig. 2 Fluxon-antifluxon annihilation process
observed a 0, b 8, ¢ 16 and d 24 ps after the
fluxons arc launched. The width of the picture
is 1.8 mm. (Courtcsy of A. Fujimaki.)

waves), which introduced the soliton
concept. The derivative of Perring and
Skyrme's kinks corresponds to the soli-
tons. An isolated kink solution to the
sinc-Gordon  cquation  cannot  be
destroyed and is therefore a ‘topological’
soliton. In the JTL thcory, these solitons
carry magnetic-flux quanta  (current
vortices) and arc termed fluxons. Cor-
respondingly, ncgative magnetic  flux
quanta arc carricd by antifluxons. Onc
consequcnce of the theory is that the
fluxons bchave as relativistic particles
(their cffective mass  incrcases  with
increased velocity). In beth papers' the
analysis was dircctly inspired by computa-
tional results.

The supcrconducting  circuit, made
using standard lcad-based technology,
consists of two fluxon generators, the JTL
and a sampler to measure the flux in the

¢+ JTL (Fig. 1) all arc based on the Joscph-

son cffect. A fluxon is injected into the
JTL when a control current /_to the fluxon
gencerator exceeds a critical valuc. A bias
i current /| perpendicular to the JTL con-
i trols the velocity v of the fluxons (which is

s
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0 10 20

Time (my)

Fig. 3 Collision of clockwisc and anticlockwise
envelope solitons travelling around a thin
cylindrical shell. The shape of the envelope
persists  because of the balance between
amplitude dispersion and the nonlincanty of
the clastic medium. Without this balance the
wave packet would disperse. The top trace
shows the excitation pulse. (From ref. 2.

typically 4 x 10" m s '), and must also
exceed a minimum value. The sampler
detects only at onc central point. <o that
the flux across the whole JTL cannot be
measured in onc go.

Instcad, a variable delay 2A¢ can be
introduced between the two  fluxon
generators, effectively moving the fluxon-
antifluxon pair left or right by a distance
vAt. A single scan, such as shown in
Fig. 2. is obtained by swecping Ar. The
time sequence shown in Fig. 2 is obtained
by introducing a sccond delay AS before
firing the sampler.

Fujimaki et al. thus obscrve the colhision
of a fluxon and an antifluxon, in which the
two merge, interact and dissipate their
cnergy via a ‘breather mode’ (the sohton
and antisoliton bound together in a local-
ized, lower-cnergy state) into hnear
oscillations (‘radiation”) which are finally
absorbed by shunt resistances (Fig. 2)
This agrees well with computational
results and can also be understood 1n
terms of {luxon perturbation theory'. In
other cascs, the fluxons can sunvive the
collision. The fringes in the traces are non-
solitonic effects inevitable in real versions
of such idcalized mathcmatical concepts
The authors also demonstrate the refative
istic naturc of the fluxons by showing that
the product of the puise height and the
pulsc width is independent of the fluxon
velocity.

Wu et al.’ observed envelope solitons
in clastic solids for the first ume. In
contrast to topological sohitons, cavelope
solitons are wave packets with o woliton-
shaped envelope (Fig. 3). Earlier cxpen-
ments with fluid surface waves have been




interpreted in terms of envelope solitons®.
Wu et al " excite flexural wave packets by
an acoustic horn driver on a circular-
cvlindrical thin elastic shell. The waves
propagate clockwise and anticlockwise
around the cylinder Their nonlinear
interaction is seen by means of transducers
mounted on the shell. The reason for
using thin shells 1s that this system is very
dispersive and has a high nonlinear
response, making the generation of soli-
tons feasible, and a large quality factor, so
that they persist. Such a combination of
parameters generally makes soliton for-
mation in off-equilibrium (highly distor-

ted) systems accessibie to observation. temperatures. Unfortunately, experi-
As in other quickly varying hyperbolic mental evidence of this mechanism
Prooted ca Ceecar Artain by Torncreraphn [onded. Bavingstoke Hampshre

classical fields, the slow modulations of
the flexural waves on the shell are descnibed
by the nonlinear Schrodinger equation.,
The parameters in the interacting enve-
lope soliton solutions of this equation can
be fitted perfectly to the observed data,
thus implying the existence of envelope
solitons.

Solitons are not of interest to physicists
alone. Davydov’ has proposed application
of envelope solitons to understand energy
storage and transport in protein chains.
Our computer studies® of the quantum
model of a-helical proteins show that the
solitons have long lifetimes at biological
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Thermal sine-Gordon system in the presence of different types of dissipation
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The effects of thermal fluctuations on solitons and phonons of the sine-Gordon system are investi-
gated in the presence of a ag, —f4,,, dissipation. The analysis requires the assumption of a more
general auiocorrelation function for the noise than the one used in previous works. We verifly that
this leads to the correct results for the average kinetic energies of solitons aad phonons in the sys-
tem. We also evaluate the linewidth for a Josephson oscillator in the presence of both a and § dissi-
pation, and lastly we briefly discuss the extension of the theory to more general dissipative tesms.

1. INTRODUCTION

The effects of thermal fluctuations both on solitons and
phonons of the sine-Gordon system are relevant in the
description of many physical systems in cortact with a
heat reservoir.'~% In the conteat of Josephson junctions,
for example, 1t was shown that thermal fluctuations in the
fluxon velocity are directly related to the appearance of a
very narrow oscillator linewidth.%® The coupling of the
sine-Gordon system to the heat reservoir can be schema-
tized as shown in Fig. 1, where A represents an ordered
flow of energy from the system to the heat reservoir (due
to dissipation) and B represents a disordered flow of ener-
gy from the reservoir to the system (thermal fluctuations).
This means that the loss term in the sine-Gordon equa-
tion is intnnsically connected to a noise term {dependent
on temperature) representing the effect of the reservoir on
the system. This scheme leads to the following thermal
sine-Gordon (TSG) equation:

Bus = by =sind=n+T($)+n(x,1), m

where I'(¢) represents a generic dissipation and n (x,1) is
the stochastic force associated with the loss. [In Eq. (1} a
bias term 7 which represents ordered energy input into
the system, suitable for many practical applications, is
also included.] In'recent papers the TSG cquation was
studied by assuming a loss term proportional to ¢, [i.e.,
Mé¢l=ad, in Eq. (1)}, and an sutocorrelation function
for the noise given by

A
5 - 0RO
LTLTER
FIG 1. Schematized representation of the thermal sine-

Gordon system. A represents ordered flow of energy from the
sine-Gordon system to the heat reservaoir and B represents
disordered Row from the reservoir to the system.
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kyT
EO

{nix,0)nix"t'))=16a Slx —x')8(t —1") . (2)
In Eq. (2) {( -+ - ) means ensemble average, £, is the rest
energy of the soliton (used to fix the scale in energy), ky 15
the Boltzmann coanstant, and T is the temperature. The
prefactor in Eq. (2) was determined by applying the
fluctuation-dissipation theorem to a soliton with small ve-
locity.* Among other results, it was shown that as a
consequence of the thermal reservoir, solitons have an
average energy of Lk, T per mode.*” This analysis was
also applied to a Josephson junction, leading to an ex-
pression for the oscillator linewidth in agreement with ex-
perimental measurements.’ In the context of the Joseph-
son junction however, besides a loss term proportional to
$,, it is of interest to include a loss proportional (o @,,,
which is due to normal surface currents through the junc-
tion. This kind of dissipation is found to be respansible
for several interesting phenomena such as bunching of
fluxons,’ and appearance of strong deformations on the
Auxon tail.'” The aim of the present paper is to extend the
analysis in Ref. 6 to include this ¢,,, dissipative term.
More precisely we will consider I in Eq. (1) to be given
by

r¢)=a¢,—Bé.y a.BER™ 3

and assume for the noise the following autocorrelation
function:

k,T
(nix,0n(x" 1)) =16——5(1 —1")
Eq

5(x —x’) . (4)

a!
b’ —_R——
* Bax’

The effects of the noise term (4) in Eq. (1), will be then
studied in the cases of pure soliton and pure fluxon
motion, respectively, in Secs. 11 and I1f. As a result we
find that the *“thermal” solitons and phonons will stil
have an average energy of, respectively, k37 and 44T
per mode; however, the presence of the 8 term in (3) will
decrease the diffusion constant of a soliton by a factor
a/(a+8/73). In Sec. 11l we also relate the above results
to the Josephson junctions by showing that there will be

593 © 1988 The American Physical Society

14.




594 M. SALERNO, M. R. SAMUELSEN, AND H. SYENSMARK 1]

no change in the linewidth expression given in Ref. 5 due
to the presence of the f dissipation. Finally in Sec. IV we
give a short summary of the main results, including a
brief discussion on the generalization of the above-
mentioned results to higher-order dissipative terms of the
type 37, a,D¥¢, witha, ER, D, =3/3x, and m EN.

1. THERMAL PHONONS
In this section we consider the TSG equation
b — O —sinp=n+ad,—L,,, +nix,1) (S)

in the small-amplitude limit and with no solitons in the
system. Phonon modes y are seen as small oscillations
around the groutd state ¢o=—sin~'n salisfying the
boundary conditions

¥, (0,0)=y,(L,1)=0 (6)

The field #!{x,1) in the small-amplitude limit can be writ-
ten as

‘ $(x,1)= ~sin~Nn)+ ¥lx,t) with [|¢]l << 1 . 7

By substituting (7) in (5) we get the following stochastic
equation for thermal phonons:

Ve =¥y == ap, =B, +nix1) . (8)
When a=0, 8=0, and n(x,1)=0, these phonons are just
classical Klein-Gordon modes with energy given by

Ey r0
Hon=¢ [ axlvl+ 91+ v -n1'"] o)

there L is the length of the system). The general solution
of Eq. (8) can then be expressed in terms of the complete
set ¢, of orthonormal Klein-Gordon modes as

Vix =3 A4,(08,(x)=V2/LY A,()coslk,x) (10)
with k, =Wm/L and V2/L just a normalization factor.

Inserting (10) in (8) and projecting the resulting equation
along the unperturbed eigenstate we get

Apotla+BkDA, +wdA,=c,(0), an
where

e (N=V2/L fOLn(x,l)cos(k,,x)dx (12)
and

Wl=(1—)) 24 k2. (13)

By using (4) we obtain for the autocorrelation function
and for the power spectrum of the normal process ¢, (()
the following expressions:

=—u

a vl _ﬁ_ w 2
—u 8[(¢,)dx+8f(¢,,)dx

arl(uH-—?—y%(u)

R, (1 —1)= (g, 0" )g, (1)

kyT
=16(a +Bk}) St ~1"), EN
E,
kyT
S, (w)=16(a+Bk})~—— . Y
" E,

By identifying a+Bk? with a we see that Fqgs. (11,
(14), and (15) coincide, respectively, with Egs. (341,
(2.12), and (2.13) of Ref. 6. One can follow the same
analysis of Ref. 6 to show that the average cnergy por
phonon mode is

(H,)=kyT . Ty

[This easily follows by solving by harmonic anulysis Iy
{(11) and by using Eq. (9).] It is worth remarking that this
result does not depend on the particular boundary condi-
tions used, nor on the smailness requirements of «, /1, and
7.

111. THERMAL SOLITONS

In this section we concentrate on the effect of the «. f3,
1, and n(x,t) terms in Eq. (5) on an unperturbed sinc-
Gordon soliton

d=4tan 'exp[y(ulx —ui)],

plu)=(1—y)='7

(17

Note that the n in (5) shifis the ground state from 0 1o
~sin~ '; therefore a soliton in our system should be scen
as a 2w kink from —sin "'y to 2w ~sin” ‘9.

An equation of motion for the perturbed soliton van be
easily obtained by defining the momentum

P=-'Tfj:¢‘¢,dx (s

and differentiating it with respect 10 time, this giving

T a B .
"d—tr-—z +'§f¢,¢,dx+-§f¢”¢“dx+e(l}, (1
where

eltt=—3 [ " ¢,nlx,0dx . 120,

With neglect of thermal noise, Eq. (19) has stationary
2m-kink ¢“ solutions moving with the power-balunce ve
locity uy, for small perturbations, satisfying'!

-?(l—u%)’”—auo(l—uf,)—§u0=0 21
and with momentum
Po=uyylug) . 2

In the stationary case, the integrals in Eq (19) can be
wrilten as

'

E-Eﬂ}y_)' (Z]I




where we used Eq. (18) together with ¢;= —u¢:. Equa-
tion (22) defines the functions y,(u) and y(u) which for
small perturbations (or small velocities) reduce to the
usual Lorentz factor in (17).

By inserting Eq. (23) into Eq. (19) we get for the
momentum the following Langevin equation for P:

ar _m

dt 4
The noise term £(¢) in Eq. (24) introduces fluctuations in
the momentum and, from (22), in the velocity of the kink
according to

nﬂ%l +elt) . (24)

9p d8u _m3q
3 3t + 3y Au +¢€ll), (25)

where Au measures the deviation of the 27-kink velocity
from the power-balance value (21). The autocorrelation
function and the power spectrum of the process e(1) in
(25) are then easily evaluated by means of Egs. (4) and
(21). we write

ks T
RU~1)=Z -t
e : 24 E, nlu)dlr -1,
26
7 ksT el
S lwl=— nu) .
‘ 2u £,
For small velocities (i.e., n=0) we have from (23),
4y |-
'q(u)z—u‘ a+£ . (27)
” 3
Then Eq. (25) reduces to a Langevin equation for u,
du _ 8
Al a+ 3 u+e(r). (28)

By using (26) and (27), Eq. (28) is easily integrated by har-
monic analysis, this giving

S lw)
Slwl=—t 29)

wl+ a+%

from which it follows that

“ kyT
(u)=R,0)= [* i;%s,(th’- : (30)
- o

The time average of the kine:' . energy in the Brownian
motion of the 27 kink is then evaluated as

(Ep)=1E{u?) =1k, T. (31)

From Eq. (29} a diffusion constant D for the 2m-kink

motion can also be derived as

8
a+3

D= ' (32)

1
E,

which is just the usual relation reported in Ref. 6 with a
identificd with a +8/3. The effect of the 3 dissipation on
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the 27-kink motion is then 1o decrease its diffusion con-
stant as one would have expected. We finally close this
section by showing that the linewidth of a Josephson os-
cillator with 84,,, damping will still be given by the same
expression reported in Ref. 6. To this end we return to
Eq. (24) {which is valid for all ) and rewrite it as

4,70, 38u
thu+4 apAu-aPc(t), (33

this leading to the following expression for the power
spectrum of Au:

2 2

S, (w)

Spdar= |3 80 S
an 3 b} ™ dn
4 op

and by performing the same analysis of Ref. 5, one gets
the following linewidth expression:

ks T R}
Av= -, (35)
¢t Rs

where Rp « 9u /0p, Rg < u /p, and ¢, is the flux quantum
h /2e (for details we refer to Ref. 5).

1V, CONCLUSIONS

It has been shown that the effect of a thermal reservoir
on solitons and phonons in the sine-Gordon system in the
presence of ag, —Pp.,, dissipations gives an average ki-
netic energy of, respectively, $k4 T and by kT per mode.
The presence of the 8 term on the soliton is to decrease
its diffusion constant. Furthermore, we showed that the
above analysis in the case of the Josephson oscillators
leads to the same linewidth expression as obtained in Ref.
5.

Finally, in closing the paper, we wish to point out that
the above analysis can be generalized 10 dissipations of
type 4¢, with & given by the following differential opera-
tor:

N
d= ¥ (—1)"a,D}* where D, s-a— . (36)
aco dx

In this case we need to replace the autocorrelation func-

tion (4) for the noise n (x,1) by the following expression:

0

5(1 ~1)a8(x ~x') 3N

(n(x,n(x*, 1)) =16

in order to get the correct results. Indeed one easily sces
that (36) and (37) will give little changes in the above re-
sults excepl for the substitutions of

(@+BkH—ag+ 3 ak¥ (3%)

in the phonon case and
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no change in the linewidth expression given in Ref. 5 due
to the presence of the B dissipation. Finally in Sec. IV we
give a short summary of the main results, including a
brief discussion on the generalization of the above-
mentioned rcsults to higher-order dissipative terms of the
type I7.,a,D}¢, witha,ER, D, =3/3x,and m EN.

11. THERMAL PHONONS
In this section we consider the TSG equation
¢xx —¢ll-5in¢=n+a¢l _B¢.ul +"(x") (5)

in the small-amplitude limit and with no solitons in the
system. Phonon modes ¢ are seen as small oscillations
around the ground state ¢p= —~sin~'n satisfying the
boundary conditions

¥,(0,0)=y,(L,0)=0. 6)

The field ¢(x,t) in the small-amplitude limit can be writ-
ten as

$lx,1)=—sin~(q)+¢lx,0) with [|¥]l << 1 . )]

By substituting (7) in (5) we get the following stochastic
equation for'thermal phonons:

Ve =V =1 =) ay, =By, +nix, ). (8)

When a=0, 8=0, and n(x,1)=0, these phonons are just
classical Klein-Gordon modes with energy given by

H (9)

Eo L
Hp=—g [ ax(¥l + ¥+ -7

{here L is the length of the system). The general solution
of Eq. (8) can then be expressed in terms of thé complete
set ¢, of orthonormal Klein-Gordon modes as

wx,)=3 A4,(t)$,(x)=V2/LT A t)costk,x)  (10)
L] L]
with k, =n#/L and V'2/L just a normalizaiion factor.

Inserting (10) in (8) and projecting the resulting equation
along the unperturbed cigenstate we get

Ay +la+BkDA,  +0} A, =¢,0), an
where

e )=V2/L foLn(x.r)cos(k,x)dx (12)
and

W =(1=p) 4kl (13)

By using (4) we obtain for the autocorrelation function
and for the power spectrum of the normal process €,(¢)
the following expressions:

J

= -y

L Jigerax+ B [ gy ax

ar,(u)+£y (u)J

R Ut —t')=(e,(1')g, (1))

il

koT
=16(a+Bk})
0

(15

2 ks

S, (w)—l6(a+ﬂk )
Ey

By identifying a+pBk} with a we see that Egs. (11),
{14), and (15) coincide, respectively, with Eqs. (3.91,
(2.12), and (2.13) of Ref. 6. One can follow the same
analysis of Ref. 6 to show that the average energy por
phonon mode is

(H.)=k,T. t1h)

{This easily follows by solving by harmonic analysis Ly,
{11) and by using Eq. (9).] It is worth remarking that this
result does not depend on the particular boundary condi-
tions used, nor on the smallness requirements of «, /3, und

7.
1I. THERMAL SOLITONS

In this section we concentrate on the effect of the «, /3,
1, and n(x,t) terms in Eq. (5) on an unperturbed sine-
Gordon soliton

¢=4tan " 'exp[yludx ~un)},
2)-)/2 .

(7
ylu)=(l—u

Note that the 7 in {5) shifts the ground state from 0 to
—sin~'q; therefore a soh(on in our system should he scen
as a 2 kink from —~sin~'n 10 27 —sin~—'y.

An equation of motion for the perturbed soliton can be
easily obtained by defining the momentum

=—1 7 9.4.dx g
and differentiating it with respect to time, this giving
a
7=ﬂ+ f¢,¢,dx+ f¢u¢udx+£“) (a9
where
5(!)=—%f*-¢,n(x,l)dx . (20)

With neglect of thermal noise, Eq. (19) has stationary
2m-kink @“ solutions moving with the power-balance ve-
locity ug, for small perturbations, salisfying!!

l':1-:'1-(\—u},)”’—auo(l—u(’,)-guo=0 20

and with momentum
Pa=ugylug) . 12

In the stationary case, the integrals in Eq. (19 cun bhe
writ{en as

_"_H‘.:.'.‘_', Q3
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In long Josephson junctions the motion of fluxons is revealed by the existence of current steps.
zero-field steps, in the current-voltage characteristics. In this paper we investigate the stability of
the fluxon motion whea high values of the current bias are involved. The investigation is carried on
by numerical integration of the model equation, the perturbed sine-Gordon equation, simulating
junctions of overlap and annular geometry. A detailed description of the mechanism for the switch-
ing from the top of the zero-field step for both geometries is reported. Moreover, the cflect of the
various dissipations and of the junction length on the switching-current value is investigated. A
simple boundary model is able to describe, for junctions of overlap geometry, the qualitative depen-
dence of the switching current on the system parameters.

MS code no. B13799

1. INTRODUCTION

It is well known that Josephson junctions can support,
under appropriate conditions the motion of magnetic
field quanta (ftuxons). The evidence of such motion is ob-
served experimentally as current singularities [zero-field
steps (ZFS's)] in the current-voltage characteristic and as
microwave emission, in junctions having physical lengths
bigger than the Joscphson penctration length ).,.' Since
1973, an attempt has been made to explain the observed
phenomiena in terms of oscillatory solitonic solutions of
the “perturbed” sine-Gordon equation (PSGE) describing
the clectrodynamic of a Josephson junctiont™For a unidi-
mensional geometry and in normalized units it has the

form -_ ('.L’/v):-.) ’

¢u —éu —Sin¢ga¢[ -p¢xx( -Y . ’ (1)

Here, ¢ is the usual Jasephson phase variable, x is dis-
tance along the junction normalized to the Josephson
penctration length A, ¢ is time normalized to the inverse
of the Josephson plasma angular frequency wy, a is the
normalized shunt conductance that takes info account
tunneling of normal clectrons across the junction, 3 is the
normalized real part of the superconductor surface im-
pedance, v is the dc bias current normalized to the
Josephson critical current, and the subscripts indicate
partial derivatives. Equation (1), together with the ap-
propriate boundary conditions, determined by the partic-
ular junction geometry employed, gives a very good
description of the obscrved dynamical behavior of the
junction, often to a surprising degree of accuracy. It has
10 be noted, however, that since exact analytic dynamical
solutions of Eq. (1), are, in general, not known, ali the in-
formation is obtained cither by direct numerical integra-
tion of Eq. (1), or by perturbative methods based on the
known analytical solutions of the unperturbed sine-
Gordon cquation [@a=F=y=0 in Eq. (1)}, or by some
other approximation scheme,

The perturbative approach is very useful in describing
the overall dynamics of fluxons in the junction, in partic-

1988 PACS number(s): 74.50. + r, 02.70. 4 d

ular when all the perturbing terms are small, but it fails
in describing extreme situations such as the ones where
the stability of the traveling solutions at high bias values
is involved. In fact, the perturbative approach is unable
to predict the maximum current amplitude of the ZFS's,
i.e., the maximum dc bias current that can sustain fluxon
propagnllon The simplest power-balance perturbative
scheme?® predicts an infinite ,step current height, while the
pcrturbnuve scheme proposed in Refs. 4 and 5 predicts a
maximum normalized step height equal to one. In con-
trast, experimental and numerical results, by various au-
thors tylncally give a maximum step height between 0.4
and 0.8.° The main reason for the failure of the perturba-
tive approach is that, being based on solutions of the pure
sine-Gordon equation, it is not valid when the perturba-
tive terms [the right-hand side of Eq. (1)] become large,
as occurs when bias values that are not small are con-
sidered.

Since the question of the maximum current amplitude
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of the ZFS's is of considerable practical importance to .

the experimentalist, and since no completely adequate an-
alytic or perturbative approach is presently available, we
proposc in this work to furnish a detailed numerical
study of the question, with the hope of providing a
springboard for future theoretical work. We note that a
step in the same direction has recently been taken by
Zhang and Wu.” With respect to their work, our work (i)
considers junctions of both annular and overlap
geometries,’? (ii) describes in detail the instability mecha-

nism for both geometries, and (iii) employs more than one

numerical scheme, which in turn, (iv) pinpoints a numeri-
cal pitfall to be avoided. Like Zhang and Wu, we limit
attention to dynamic states involving a single propaga-
ting fluxon. Moreover, we shall not consider, in this
work, the effects of intrinsic and extrinsic noise and of
barrier spatial nonuniformities® on the stability of the
fluxon oscillations. The reasons for this choice are based
on the facts that the cited effects, although often impor-
tant in physical devices, can always be reduced by a care-
ful shielding of the junction from clectromagnetic in-
terference, by lowering the working temperature and by

15.




improving the fabrication processes. Then the maximum
performances will be determined by the intrinsic instabili-
ties of the Aluxon oscillations, which are the subject of
this work.

In Sec. 11 a description of the numerical methods used
is reported. Junctions of annular geometry and of over-
lap geometry are then analyzed in order to identify the
ranges of stable Ruxon motion in each case. Finally, a
quasianalytical model is presented which gives reasonable
qualitative agreement with the numerical results for over-
lap geometry junctions.

II. NUMERICAL METHODS

In order to numerically solve Eq. (1) with the appropri-
ate boundary condition, two different numerical schemes
have been employed. One is based on a Fourier-Galerkin
spatial decoamposition of the phase ¢ as®

. N
dx.N=1x +d()+ 3 |dalt)cos i'il’f-
A=l
+ ¢, (t)sin [ET—X-H ,

()

where the ¢,(t) and ¢, (t) are unknown functions of time,
!'is the normalized junction length, and 7 is a constant
chosen to take appropriately into account the boundary
conditions. For the annular geometry junction the
boundary conditions are

x¢,

dlx,)=¢(x, ] +N+2mm, (3)

where m is the difference between the number of fluxons
and antifluxons present along the junction (since the junc-
tion is a closed loop m is a conserved quantity). In this
case,

n=2—",'-"-- @)

For the overlap geomet®y junction the boundary condi-
tions are .

6,00,n)=¢,0L, V=7, (5)

where now 7 represents the normalized value of the
external magnetic field along the y direction in the junc-
tion plane. Moreover, the boundary conditions [Eq. (5)]
impose that ¥, =0 for all n. All the results obtained
herein are referred to the case where no external magnet-
ic field is applied.

Although other geometrical configurations are possi-
ble, only the above two have been considered because
they are the most useful for the understanding of the
junction dynamics.” Inserting Eq. {2) into Eq. (1) and us-
ing the orthogonality of the trigonometric functions, the
following set of differential equations is obtained:

YRR ST S P g 'E
’ M,sw?Ax,qAA).

$0+#°$°—‘Y = e '}" folsimﬁ dx » (O 4

5 ; 1, 2t nwx

ptind, Wi, =— 7 fosmctcos ] dx ,
n=12..., N, (6b)

" ; 2 i, . [nmx

Ve +y,¢.+mf,¢,,=-7fusm¢sm ] dx ,
n=12,...,N. (b

Here , =(nw/l), p, =a+w?B and overhead dots denote
time derivatives.

The set of equations (6) is solved using a sixth-order
predictor-corrector method with variable step size.'
while the right-hand sides of Egs. (6) are evaluated by
fast-Fourier-transform routine.!' The accuracy of the
numerical integration was checked by decreasing the
time step and by increasing the number of spatial har-
monic components considered. A typical value for the
time step was A7 =0.05 while a choice of a number of
spatial harmonics equal to twice the junction length was
always appropriate.

The other numerical scheme employed was an implicit
finite difference method'? where the phase ¢ is restricted -
to a square mesh

n

The derivatives in Eq. (1) are approximated by a second-
order Taylor expansion in the step size, with a time aver-

" age over one time step for the x derivatives and inserted

into Eq. (1). The boundary conditions are handled by in-
troducing virtual extra points at the edge of the mesh in
the usual way. A predictor-corrector loop 1s used to
evaluate the nonlinear term in Eq. (1), enhancing in this
way the stability of the whole scheme. Finally a set of
linear algebraic equations with a tridiagonal coefficient
matrix is obtained in the form

Ax=y, (8)
where
x=(81*", ..., e%*") 9)

and y is an appropriate function of the phase values at
the mesh points and previous two time steps. Equation
(8) is solved by the “double-sweep method"'? which hus
been demonstrated to be stable as long as the matrix 4 s
diagonally dominant, i.e., in this case

IB+Aar)

3 3 <l (10)
alAx)*+2(Ax) /At +28+2 At

Again the accuracy of the results has been checked by

halving both the space step Ax and the time step Ar. Al-
though it may seem exaggerated to use two different nu-
merical methods to solve the same equation, this was
very useful to test the independence of the numerical re-
sults on the scheme used. This fact is very important
when dealing with dynamical states parametrically driven

to unstable regions. Another point to consider is that, al-
‘l
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FIG. 1. Time evolution of the first four mode speeds. The
modes considered are the Oth (solid curve), the Ist (dashed
curve), the 2nd (dash-dotted curve), and the 3rd (dotted curve).

though the finite difference method seems to be more
efficient for long junctions, the multimode method is able
to give more physical information about the dynamical
states investigated. For example, looking at the phase ve-
locity of each mode in annular junctiorf\is very useful to
determine whether or not stationary motion conditions
are achieved. The mode phase velocity is defined as

F.(¢,)

un=_F_u(—¢T)-v “l)

where F,(Y) is the nth component of the spatial Fourier
transform of Y. This definition is based on the idea that
each Fourier component of the phase travels with a
modulating velocity u,fwhich is slowly varying on the
time scale of the time step used in the integration scheme.
In Fig.»1 a plot of the time dependence of the phase ve-
locity of the first four modes is shown for the case of an
annular geometry junction with | =16, a=0.18, 3=0.01,
y =0.89, m =1. The parameter values correspond to the
top of the first current singularity and the time evolution
shows how the fluxon solution becomes unstable and
breaks down at the time t~35. In fact, as long as the
fluxon is stable and travels along the junction, all the
modes have the same velocity, the fluxon velocity,
whereas when the solution becomes unstable it undergoes
transitory state where all the modes behave differently
and finally reaches a new stable configuration where
again all the modes have the same velocity (not shown in
the figure). -

[II. ANNULAR GEOMETRY

In this section a study of the mechanism for the
switching from the “fluxon” state (ZFS1} to the “rotat-
ing" state (McCumber branch) is carried out for junctions
of annular geometry. The choice of the annular geometry
15 made because in such a system there are no collisions

8
6
4
24

o |

-2

0 i

1
0 2 4 6 , 8

-

FIG. 2. ¢, at two different bias levels: y =0.7$ (solid curve)
and y =0.8 (dashed curve).

of the fluxons with the boundaries; thus the resulting dy-
namics is smoother. Moreover, since junction normal-
ized lengths { >> | are always considered, the motion of u
single fluxon on an infinite Josephson transmission line is
well approximated. This allows a reduction of Eq. (1) t0
a third-order ordinary differential equation (ODE) for thie
traveling phase profile, reducing the problem to the study
of a low-dimensional system.

In Figs. 2-4 .the initial conlition of the fluxon line
shape proposed by Ferrigno anu Pace? is used,
dolx,0)=sin"'y +41an~{exp[( v —ugr)] —

«l
x(1 _72)1/4/( 1 _ué)llz‘] ,
N
(12)

where u, is computed from power-balunce considera-
i oned
tions

A
speed |
1.000

0.985 4

. 0.980 T ) T 1
0 10 20

time

FIG. 3. Stabilization of the fluxon alter a bias change illus-
trated by the first four mode speeds as in Fig. {. a=0.18,

| A=0.1,y=0.85 and ! =16




dug (1 —y2)l/e B U=y)'? ' particular numerical code used.
=Tr U—u2 1%t 3T A (13) ! When the B losses are absent,'” a constant speed u 15
0 0 found for ail values of ¥ less than one. If a small B loss 1s

present, i.e., J <<a, a constant speed v is not found fer y

N In the limit y—0, u, assumes the value found by values very close to one. For y > | there are no more
_.-» McLaughlin and Scott> After some time the solution re- | static solutions of Eq. (1), therefore, a solution of fluxon
laxes toward a fixed profile traveling with a constant = structure is not possible. This leads to the first kind of

speed u. The value of u is determined either by a mea-  switching mechanism. It can be described as the disap-
surements ‘of the mode phase velocities, or by a direct pearing of the stable equilibrium solutions of Eq. 1),

« measurement of the fluxon position, depending on the  which form the asymptotic state of any fluxonlike solu-
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FIG. 4. Time sequence of the switching. (a) r =25;(b) t = 50; (c) t =55; (d} ¢ =60; {e) r =65; (N 1 =70; (g) 1 =75.
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tion. In terms of the chain of pendula analog, this corre-

o

dula. If Ref. 14, Burkov g GD) have fmade a detailed sta-
bility analysis of Eq. (1) with =0 and with periodic
boundary conditions corresoonding to an annulas
geometry junction. Their results also reveal stability of
the luxon when ¥ < 1. The same result is found in Refs.
15 and 16 for a fluxon in an interval extending form — «
to + . However, the stability analyses in Refs. 14 and
17 are valid only when the 3 losses are absent. We shall
show in the following that the effect of the J losses is to
decrease the critical value of ¥ for which a stable fluxon
motion can occur.
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The presence of the perturbative terms in Eq. (1) intro-
duces a modification of the fluxon line shape from the
sine-Gordon one.* The modification becomes more pro-

nounced for increasing bias values. In Fig. 2 the numeri- .

¢

cal results for the x derivative of the fluxon line shape are -

shown. The parameters are: a=0.05, §=0.02, [ =8,
y =0.75 (solid curve), and y=0.8 (dashed curve). The
main difference from the sine-Gordon form of the fluxon
line shape in Fig. 2 is the presence of an overshoot at the
trailing edge of the fluxon. The overshoot is present
when the surface impedance term 8 is not negligible and
is more pronounced at high bias. In the following we will
show that it is just the presence of the B term in Eq. (1)
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" that limits the maximum bias current that sustains the

fluxon motion in annular junctions.

In order to determine the critical current values for the
switching, the following numerical procedure has been
followed. At the beginning, Eq. (12} is used as initial con-
dition with a value of y relatively small (in order to be in
a stable region). After some time of mtegranon. y is in-
creased slowly (with a time denvauve 1073 to a new
value. Then Eq. (1} is integrated for fime (typically 50
units) at constant ¥ to allow a stabnhznuon of the solu-
tion. The whole procedure is repeated again until a
switching is observed. The measure of the mode phase
velocities is used to check that the fluxon has assumed a
stable profile. In Fig. 3 is shown the stabilization process
in terms of the time evolution of the speed of the first
four modes. As is clearly shown, all the modes tend rap-
idly to have the same speed, indicating that the fluxon
has assumed a constant profile. When the critical value
Y.« is reached, the stabilization of the modes speed does
not take place and a switching is observed.

In Figs. 4(a)-4(g) a detailed time sequence of the
switching is shown. The parameters are, in this case,
a=0.18, 8=0.1, /=32, and 0.89 <y <0.9. All the plots
are referred to a reference frame moving with the fluxon.
The switching can be described in the following way:
First the overshoot at the trailing edge of the fluxon
starts to grow in size and decreases its speed [Figs.
4(a)-4(b)]; when the overshoot is large enough, it breaks
in a fluxon-antifiuxon pair, Fig. 4(b) (in this plot a fluxon
is represented by a positive pulse and an antifluxon by a
negative one); the new fluxon starts to move forward and
bunches with the original one, while the new antifluxon
starts to move backward, driven by the current bias [Fig.
4(c)); the process of nucleation of fluxon-antifluxon pairs
continues adding new fluxons and antifluxons [Fig. 4(d)};
when the group of luxons meets the group of antifluxons
which has traveled all the way around the junction, a
multiple collision occurs [Figs. 4(e) and 4(f)]. These
finding were briefly reported in Ref. 17. As a result a net
energy loss occurs in each fluxon (or antiftuxon) to such
an extent that they are not able to survive the next col-
lision and form’ breatherlike structures; these structures
do not gain energy from the bias and relax down to the
flat configuration: ¢, =2n/l, ¢,5>>1 [Fig. 4(g)]. The
final state obtained (a uniform phase twist increasing
guickly in time) corresponds to the McCumber curve for
the annular junction.

The mechanism for the switching just described sug-
gests that the presence of the overshoot in the fluxon line
shape plays a vital role for the triggering of the switch-
ing. The qualitative behavior of the overshoot can be un-
derstood by studying the traveling wave reduction of Eq.
{1). With the following change of variables

E=x+ut, (14)

Eq (1) reduces to

(1—u )¢“—sm¢ au¢‘-—f3u¢m y.
Thxs ODE has a thrce-d:mensnonal phasc space wnh fixed
points

(15

¢}=sin"r:!:2jﬂ. $1,=0 &4,=0,
$p=m—sin~'yx2kw, @; =0, ¢y ,=0.

The single fluxon solution of Eq. (1} corresponds to a
curve connecting the points ¢, and ¢, ,,, as is shown in
Fig~5. Since the overshoot occurs near the ¢, point, a
linearization of Eq. (15) around this fixed point can pro-
vide useful information on the character of the oscilla-
tions forming the overshoot. Linearizing Eq. (15) around

¢, gives - lalaus)
(1—udly, DU —y) 3y =auy, —Buy,,, ,

where |[y|| << 1. This equation has a general solution of
the form

y=de 1B ce™t (18)

where_A, B, and C are integration constants and A, A;,

and )Aare the roots of the characteristic polynomial:
1
P(A)==A~ A’+ k+——z-l—. (19)

ﬁ B Bu

Because of its structure, P(A) has always a positive real
root and can have cither two negative real roots or two
complex conjugate roots with negative real part.

saddle foci, as described by Hayashl Eq. (19y¢an be

solved by standard methods, obtaining a fairly complicat- |

ed expression for &,, &,, and A,. It should be noted, how-
ever, that the soluiion of Eq. (19) has the speed u as an in-

dependent parameter, while u is in reality a function of
the other parameters a, 3, and y. Since the exact relation .

for u is not known, only approximate results can be then
obtained by this linear analysis. Assuming, for high bias,

u =1, it is easy to compute that in order to have complex

roots, the bias must satisfy the following condition:
1n
3

a
{—— =

Y< 27 B

Since, for reasonable values of a and B, the right-hand
side of Eq. (20) is always very close to one, this condition
states that the oscillating overshoot, associated with the
complex roots of Eq. (19), is always present.

|
|
|
!

!

FIG. 5. Sketch of the phase space for Eq. (15). The fluxon
solution connecting ¢, to ¢, ,, is shown.
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way it is possible to compute the period T and the decay

rate i of the overshoot ascillations as*
T Bl/)
= 2
Vj (1 YI)I/6 ’ ( D
(1— 2)!/6
p=-1 . (22)
Ty g 3

where terms of the order of d®/8 have been neglected.

The result from Egs. (21) and (22) has been checked with
the numerical results, finding good agreement. However,
because of the limitation mentioned above, this phase-
space analysis cannot predict the critical bias current
value at which the fluxon solution becomes unstable. A
qualitative explanation of the switching is nevertheless
possible. Perhaps a careful global analysis of the ODE,
Eq. (15), may lead to a quantitative description of the on-
set of the switching.

IV. OVERLAP GEOMETRY

In this section a study of the mechanism for the .

switching in junctions of overlap geometry is presented.
Overlap geometry Josephson junctions with normalized
lengths />>1 and without external magnetic field ap-
plied, i.c., n=0, are considered. In Fig. § an experimen-
ta) current-voltage characteristic is shown, with six
ZFS's. The first zero-field step (ZFS1) results from the
oscillation of one fluxon; the next step (ZFS2) corre-
sponds to two oscillating fluxons, etc. For all steps, at
sufficiently high bias current, the fluxon oscillations be-
come unstable and a switch to the McCumber curve
occurs. The switching is indicated by the arrows in Fig.
6. Figure 7 depicts the phase ¢(x,?) of one fluxon per-
forming a stable oscillation back and forth at ¥ =0.5, as
obtained from Eq. (1) solved numerically. The parameter
values used are a=0.05, §=0.02, and [ =8. An
overshoot behind the luxon is clearly visible. Increasing
v to 0.7 the fluxon becomes unstable and a fast spatially
uniform rotation emerges after a short transient. In Fig.
8 this transient motion is shown in more detail for a junc-
tion of length /=12 and with y =0.74 using otherwise
the same parameter values as in Fig. 7. Figure'8 displays

To t-=

IFsh

0

0 wuv)

FIG. 6. Experimental I-V churacterisli@)ofn long Josephson
junction of overlap geometry. Six ZFS's are shown.

———en tm— - — ~

404

FIG. 7. Stable fluxon oscillations corresponding to ZFSl in
an overlap junction.
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the phase at successive times f during the switching start- Z
ing at the arbitrarily chosen reference time®f=0. At

¥=0.73 the fluxon oscillation is stable. Increasing y to .
the value 0.74 the fluxon becomes unstable and after a |
couple of oscillations the fluxon hits the right-hand °
boundary {/=12) at time t ~6 and during this reflection -
it becomes unstable, Immediately after the reflection the
phase has increased by 41 but is now unstable and it con-
tinues increasing after the time ¢ ~ 14 leading to the for-
mation of additional fluxons which travel from the right-
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- hand boundary towards the left-hand boundary. Attime | time ¢ and using Eq. (1) together with the boundary con- !
N ¢~ 18 these fluxons are reflected ﬁ}n the left-hand ditions, Eq. (5), it is easy to obtain 5

boundary and annihilate the incoming ones. Eventually ! dHy ..
* the phase develops into the spatially uniform rotating _l - oS
solution as can b:scen from Fig. 8(b). From Fig. 8 it is dt P'+P°+P’+n[%l") #0.0], (24 ”
cvident that the fluxon is destabilized at one of the boun-  yhere the power input and oufput have been defined ac-
- daries during a reflection and thereby triggers the forma-  ¢ording to
tion of successive fluxons which unwind during the next f _
reflection at the opposite boundary. The same finding P,=+f ré.dx {:50;
—  has been reported by Cirillo e¢ al.” from a study of the . °, 2 |
mechanical analog of the long Josephson junction. a == foa(¢r) dx , Q5y), =
The switching can be illustrated also in terms of ener- ‘ P f/ (6. 1d b
— gy. Thesine-Gordon energy’ of the junction is 8= oﬁ $u)dx . (2 :‘:,),
Hp= f’[}(.ﬁ, P+ 44, P +1—cosdldx . (23)  Note that t_he terms P, and Py extract energy from flux-
0 ons or antifluxons whereas the term P, is an energy-

“— In terms of the pendula model, the first term in Eq. (23)is  injection term which accelerates fluxons and antifluxons
the elastic energy arising from the clastic coupling be-  in opposite directions.
tween the pendula, the second term is the kinetic energy, Figure 9 shows the time evolution of the total energy
—— and finally the térm in (1 —cosg) is the potential energy  and the power input and output terms in Eqi(ZS). Using !
measured from the static downward equilibrium state. In the parameter values a=0.05, B=0.02, and / =12, Figs. | A
the case where the dissipation and the external bias are  9(a) and 9(b) depict the total energy and powers in the |
— absent, Eq. (1) reduces to the pure sine-Gordon equation  case of a stable fluxon oscillation at y=0.73 just below |
which can be written as a Hamiltonian system with the  the critical bias current y,,. Over one period of oscilla- ‘
'n
|

Hamiltonian given by Eq. (23). When the perturbative  tion the totpl energy remains constant and the power in-
terms are present, Hy is merely the total energy of the  put balance, the power output. During a reflection at onc
system. By differentiating Eq. (23) with respect to the  of the boundaries a fast 47 change accurs in the phase ¢
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FIG. 9. Time evolution of (s the total energy Hy, and (b) the powers P, P,, and P, during the stable motion on ZFS1. Time evo-
Jution of (c) the total energy Hr, and (d) the powers P,, P,, and P4 during the switching from ZFS1.
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and the dissipation from both terms in a and 8 increases.
This results in a pronounced dip in the total energy dur-
ing a reflection. It is important to note that this energy

“ loss at the boundaries is purely dissipative and is not a re-

sult of radiation from the junction end.,Such radiation is
not accounted for in this model. In Fils. 9(c} and %(d) y
has been increased to the value 0.74 where switching
occurs {see also Fig. 8). During the switching the total
energy significantly increases, as does the loss due to the
a term. Eventually the system approaches the spatially
uniform McCumber state and accordingly@%lﬁe loss due
to the B term vanishes. When equilibrium has been
reached on the McCumber solution the averaged total en-
ergy will again be constant and over one period of oscilla-
tion P, will balance P,. This equilibrium state is not
shown in Figs. 9(c) and 9(d).

A !
V. STABILITY ANALYSIS
BY BOUNDARY MODEL

In this section a boundary-based model is introduced
to explain the switching from the ZFS's to the
McCumber curve in the overlap geometry Josephson
junctions. The phenomenon of the switching in overlap
junctions appears to be related to some instability that
takes place at the junction boundary. This was first
pointed out by Cirillo et al.'*? from observations on the
mechanical analog of a Josephson junction. The same
idea can be deduced by a careful analysis of Figs. 7 and 8.
In fact in Fig. 8(a) it can be seen that the reflection of the
fluxon that occurs at # ~6 does not leave the boundary in
a static phase configuration (¢ =sin~'y +2mn) as occurs
when stable fluxon oscillations are observed (Fig. 7). A
way to analyze this phenomenon can be to study the dy-
namics of the phase at the junction boundary (say at
x =0). In terms of the chain of pendula analog of the
PSGE this corresponds to studying the dynamics of a sin-
gle pendulum, namiely the last of the chain, under the
fluxon-antifluxon collision that describes the process of
reflection of a fluxon at the junction boundary. Follow-
ing this idea one can rewrite Eq. (1) as

¢y +ad, +sing=r +¢_, +B4,,, .

This equation can be viewed as the equation of a single
pendulum Exhe left-hand side of Eq (26)] driven by an
effective force [the right-hand side of Eq. (26)]. This

(26)

. effective force is made of the external bias y and the cou-

pling to other pendula of the chain (§,, +89,,,). The
problem here is that the effective force is not known, be-

_ ing dependent on the solution ¢ of the same equation. A

reasonable approximation may, however, be given by the
analytic expression for the Auxon-antifluxon collision

soluticn of the sine-Gordon equation, which can be !

"7 rewritten in a form that takes into account the perturba-

" $%=sin"'y+4tan!

tive terms in Eq. (26)* as

ut
r

X

sech r

Lsinh ,an
u

where I is the corrected Lorentz factor introduced in Eq.
112) as

|

_ahin
r= é%l _“ri)m
L . . .
and the velocity u may be determined by the single fluxon

power-balance expression of Eq. (13). Thus Eq. (26) be-
comes

(28

du+ap, +sing=y +¢%,(x =0)+54%,(x =0), 9
where
—4uT “Asinh(u T~
9, (x =0,1)= 4uT “*sinh(ul~ 1) (30)

ul4sinh¥ul—'r)
and
9. (x =0,1)

— —4u’cosh(u T~ ') ulsinh(u [~ 1))

A (30
[#¥+sinh¥u =)}

Equation (29) has a static solution ¢ =sin~'(y) as t— @
corresponding to the configuration of the x =0 pendulum
in the mechanical model when the fluxon is still far away.
When the incoming fluxon reaches the x =0 point (r —0)
the right-hand side of Eq. (29) changes very fast leading
to a 41 increase of the phase. After the Ruxon is reflected
(t — + ), the phase can cither relax to the new equilibri-
um state =sin"'(y)+47 or go to the rotating state cor-
responding to the McCumber solution of the simple pen-
dulum. The first case will correspond to a *normal”
reflection and to the stable dynamical state of the ZFS's,
while the second case will correspond to the switching to
the McCumber branch is shown in Figs. 8 and 9. The
value of the bias y that corresponds to the transition
from the first case to the second one will then be the one
that determines the switching from the ZFS's to the
McCumber branch. In Fig.. 10 the time evolution 1s
shown of ¢ and of ¢, for different y values (curves 1-5)
obtained by a numerical integration of Eq. (29). It can
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FIG. 10. Time evolution of ¢ (left) and ¢, (right) for the
boundary model. The curves labeled 1-5 correspond to bias
values from 0.90 to 0.98 in steps of 0.02. The switching occurs
at y=0.9$:t0.0|0a=0.05,3=0.02, and I = .
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clearly be seen that curve 3 (corresponding to ¥y =0.94) is
the last stable state and a further increase of y leads to
the switching.

V1. RESULTS AND DISCUSSIONS

Our results are summarized in Fig. 11. Figure 11(a),
curve a, shows the length dependence of the critical
switching vale of ¥y for overlap junctions with a=0.05
and 8=0.02""Curve b is the [ —» o limit for the switch-
ing value in annular junctions having the same loss pa-
rameters. As can be seen, the critical y for overlap junc.-
tions tends asymptotically to a value lower than that for
annular junctions. In passing, we note that curve a is
quite similar in form to, but slightly higher in current
than, the curve shown in Fig. 2 of Ref. 7 {(nominally the
same problem). In this conngction, we comment that the
value of y,, obtained depths. father sensitively on how y
is increased during the computations: the more *“adiabat-
ic” the increase, the more accurate the value of y,,.

Figure 11(b) shows the a dependence, for 8=0.02 and
I =12, for overlap junctions (curve a), annular junctions
(curve b), and for the boundary model (curve c¢). Once
again, it is apparent that overlap junctions switch at
lower current values than do annular juactions. And

once again, our curve a is quite similar to that shown in
Fig. 4 of Ref. 7.

Figure 11{c) shows the B dependence, for @=0.05 and |

=12, of y,, for the same three cases as before. As be-
fore, curve g lies below curve b. Comparing our curve a,
however, with the curve shown in Fig. 5 of Ref. 7, a
significant difference is apparent: our result indicates
that y,,, tends smoothly to | as B—0, whereas Zhang and
Wu's curve bends over and terminates near ¥ =0.7. In
this connection, we comment that the implicit finite
difference routine of Ref. 12, used also by Zhang and Wu,
was developed specifically to integrate Eq. (1} with 8#0.
In fact, for =0, Eq. (1) is a second- rather than third-
order equation, and much more efficient explicit aigo-
rithms are available.?! Our experience indicates that for
B—0 this implicit algorithm must be used with great
care. Even though condition (10) is satisfied, unless very
small spatial and temporal increments, Ax and At, are
used, the algorithm tends to generate spurious oscilla-
tions which can completely falsify resuits.

As is apparent from Figs. 11(b) and | 1(c), the boundary
model, curve ¢, gives a good qualitative description of the
a and B dependences of the computed ¥, values, curves

a. The essential difference is an almost constant shift of

~about 0.15 in ¥. This remarkable result strengthens the
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idea suggested by the numerical simulations that in long
junctions of overlap geometry the switching phenomenon
1s connected to an instability that is generated at the
boundaries after the fluxon-antifluxon reflection. The al-
most constant shift between the results of the simple
mode! Eq. (29) and the ones from the complete model Eq.
{26 is fully due to the choice 27) for ¢° In fact, as has
been shown in the preceding sections, the sine-Gordon
solutions are not anymore a good approximation to the
solution of Eq. (26) at high bias values. Indeed, using in
Eq (29} a numerical solution of Eq. (26) for #/computed
in a stable state close to the switching (@=0.05, §=0.02,
y =0.7, I =12) the correct switching value for y is com-
puted (y,,=0.72).

VII. CONCLUSIONS

In this paper we have addressed the prablem of the sta-
bility of the fluxon motion at high bias values. Two
different geometrical configurations have been con-
sidered. For the junctions of annular geometry the insta-
bility in the fluxon motion arises from the disappearance
of the asymptotic static states for y=1, in the case
B << 1, or, for Bffha( are not small, from the nucleation
of fluxon-antifluxon pairs. In the latter case the critical
bias value is smaller than one and tends to decrease with
increasing B {Fig. 11(c)].

An analysis of the third-order ordinary differential
equation (ODE) governing the traveling fluxons in the
|uncnon§Ts able to describe qualitatively the deformation
of the Auxon profile due to B losses that are not small, but
it cannot predict the critical bias value at which the

fluxon solution becomes unstable.
In the overlap geometry junction the disappearing of
the fluxon oscillations is due to an instability that is

originated at the junction boundaries after a fAuxon- °

antifluxon reflection. This instability causes a switching
to the McCumber curve for bias values lower than the
ones required in the annular geometry case. However,
the dependence of y,, on the parameters a and S is simi-

lar for the two geometries. The dependence of y,, on the -
junction length shows a saturation for /> 10, t0 a value -

smaller than the corresponding one in the annular junc-
tion case [Fig. 11(a)].

A simple model, based on the simulation of a luxon- .

antifluxon reflection, is able to reproduce qualitatively
the numerical results. An snalysis based on the Floquet
theory supports the idea that the switching is due 1o a
parametric excitation of the Fourier components of the
phase.2 However, since all the components are involved
in the process, it is not possible to obtain analytical ex-
pressions for the critical bias vaiues.

ACKNOWLEDGMENTS

We thank M. Salerno for helpful discussions about the
boundary model analysis. The financial support from the
European Economic Community through Contract No
St-2-0267-J-C(A), from the European Research Office of
the United Statc;Army through Contract No. DAJA-45-
85-C-0042, the Thomas B. Thriges Fond (Denmark), and
the Gruppo Nazionale di Strutturs della Materia, Con-
siglio Nazionale delle Ricerche,Centro Interuniversitario
di Struttura della Materia, Ministero della Pubblica Is.
truzione (Italy) is gratefully acknowledged.

‘Permanent address Istituto di Cibernetica del Consiglio Na.
zionale delle Ricerche, via Toiano 6, 1-80072 Arco Fclice.@’
@.Haly,

'Permanent address. Dipartimento di Fisica, Universita degli
Studi di Salerng, 1-84100 Salerno, Italy.

'A Barone and G. Paternd, Physics and Applications of the
Josephson Effect (Wiley, New York, 1982).

‘T A Fulion and R. C. Dynes, Solid State Commun. 12, 57
11973). ¢

‘D W Mclaughlin and A. C. Scott, Phys. Rev. A 18, 1652
(1978},

‘S Pagano, N. F. Pedﬁ-’if,"' S. Sakai, and A. Davidson, IEEE
Trans. Magn. Magm) 23, 1114 (1987).

YA Ferrignoand § Pace, Phys. Lett. 112A, 77 (1985).

%A Dawvidson, B. Dueholm, B. Kryger, and N. F. Pedersen,
Phys Rev. Lett. 55, 2059 (1985). .

'Y M Zhang and P. H. Wu, Extended Abstracts of the 1987 In-
rernational Superconductivity Electronics Conference, Tokyo,
Japan, 1987 (unpublished), p. 115.

'V M Vinokur, J. Phys. (Paris) 47, 1425 (1987).

°S Pagano, M. P. Soerensen, R. D. Parmentier, P. L. Christian-
sen. O Skovgaard, J. Mygind, N. F. Pedersen, and M. R.
Samuelsen, Phys. Rev. B 33, 174 (1986).

tGrAR routine, IMSL Inc., International Mathematical and

Statistical Library (ed. S}, Houston, Texas, 1982. V

|

HEFTIC routine, IMSL Inc., International Mathematical and
Statistical Library (ed. 9), Houston, Texas, 1982.

12p_S. Lomdahl, O. H. Socrensen, and P. L Christiansen, Phys.
Rev. B 25, S71}I (1982); see also, P. S. Lomdahl, Ph.D. thess,
DCAMMY ark, 1982 (unpublished). A

M. Bittiker and H. Thomas, Phys. Lett. 77a) 372 (1980); Phys. .

Rev. A 37,235(1988).

145, E. Burkov and A. E. Lifsic, Wave Motion §, 197 (1983).

I3M. Biittiker and R. Landauer, Phys. Rev. A 23, 1397 (1981).

18K. K. Likarev, Dynamics of Josephson Junctions and Circuits
(Gordon and Breach, New York, 1986),

VA, Davidson, N. F. Pedersen, and S. Pagano, Appl. Phys.
Lett. 48, 1306 (1986).

8C. Hayashi, Nonlinear Oscillations in Physical Systems
{McGraw-Hill, New York, 1964), p. 45. '

- M. Cirillo, S. Pace, and B. Savo, in Proceedings of the 1 7th Ig-

ternational Conference on Low Temperature Physics,
edited by U Eckern, A. Schmid, W. Weber, and H. W{hl! (El-
sevier, Amsterdam, 1984}, Vol. 1, p. 703.

M. Cirillo, R. D. Parmentier, and B. Savo, Physica 3D, 565
(1981).

UR. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris,
Solitons and Nonlinear Wave Equations (Academic, London,
1982), Chap. 10.

2IM. P. Saerensen {unpublished).

'

//r-'-/

LR

€

!

“




f//'/‘/'> (-/p'j . /l\ [y f,/;_,x-, ) 16.

RC 13744 (#61576) 5/13/88
Physics 24 pages

Research Report

Crises in a Driven Josephson Junction
Studied by Cell Mapping

M. P. Soerensen

Laboratory of Applied Mathematical Physics
The Technical University of Denmark
DK 2800 Lyngby, Denmark

A. Davidson

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, N.Y. 10598

- N

N. F. Pedersen

Physics Laboratory 1
The Technical University of Denmark
DK 2800 Lyngby, Denmiark

S. Pagano

Laboratory of Applied Mathematical Physics
The Technical University of Denmark
DK 2800 Lyngby, Denmark

LIMITED DISTRIBUTION NOTICE: This report has been submitied for publication outside of THM
and will probably be copyrighted if accepied for publication, t has been issucd as 3 Research Report
for carly dissemination of its contents and will be distributed ottside of IRM up to one vear alier the
HIM publicstion date.  In view of the transfer of copyright 10 the outside publisher, uy distrnibution
outside of 1IM prior 10 publication should be limued 1o peer communications and specific requesty.
After outside publication, requests should he filled only by reprints or legally obtamed copes of the
arucle te.g., pavment of rovalies).

=TS
=5= 2732 Rescarch Divison
Almaden « Yorktown « Zunich

————— ]




Crises in a Driven Joscphsoa Junction Studicd by Ccll Mapping

M.P. Socrensen®, A.Davidsonb, N.F.Pcdersen , and S. Pagano®

2 Laboratory of Applied Mathematical Physics
The Technical University of Denmark

DK 2800 Lyngby, Dcnmark

® IBM Research Division

T.J. Watson Research Center

Yorktown Heights, NY 10598, U.S.A.

® Physics Laboratory I

The Technical University of Denmark
DK 2800 Lyngby, Denmark

Abstract

We use the method of ccll-to—cell mapping to locate attractors, basins, and saddle
nodcs in the phase plane of a driven Josephson junction. The cell mapping mcthod is dis-
cussed in some detail, emphasizing its ability to provide a global view of the phase plane.
Our computations confirm the existence of a previoulsy reported interior crisis. In additon
we observe a boundary crisis for a smajl shift in onc parameter. Thc cell mapping mcthod

allows us to show both crises explicitly in the phase plane, at low computational cost.




._Introduction.

Strange attractors of a periodically driven Josephson Junction are studied numcrically
by mcans of simpie cell mapping‘. We focus herc on the sudden changes of strange
attractors, which may occur when some parameter values are altered. These changes are
called crises®~3. Two different types of crises are discussed, namely the boundary crisis and
the intcrior crisis.

Following the notation of Grebogiz':’ et al. we call the collision of a stable chaotic
attractor with an unstable periodic orbit at a basin boundary, a boundary crisis. Boundary
crises result in the sudden annihilation of the chaotic attractor. In contrast, an interior crisis
arises from a similar collision of attractors from within a single basin. In this case the chaotic
attractor has a sudden cxpansion in phase space.

We have choscn to study the driven Joscphson junction for a range of paramcters al-

38 Kautz has found two crises, one at each end of the paramter

ready studicd by Kautz
range, and he has identificd one as an interior crises. We confirm this result, and show that
the other crisis is a boundary crisis.

To study numerically the global behavior of the Josephson junctioa it is advantageous
to use cell mapping methods'’~ 0. We shall use only the simplc cell mapping algorithm
where the 2-dimcnsional phase space is divided into rectangics or cclls and the governing
dynamical equation defines a way to map each cell onto another in the phase plane. A more
elaborate cell mapping method is the generalized cell mapping procedurcg. Here it is allowced
for a mapping of a cell to have multiple image cells with appropriate individual mapping
probabilities. In Ref. 9 the two above cell mapping mcthods are combincd into “compatible
simple" and "generalized” cell mapoing.

The organization of this paper is as follows. Section O bricfly introduces the dynamical

cquation of the system under study. including paramcter values. Then the concepts of the

s




cell mapping method arc developed, and some of its limitations arc pointed out. Section LIl
presents the computed currcnt-voltage (I-V) curve for the parameters of intcrest, along with
a 1 dimensional Poincare map. These were the tools used by Kautz in his investigation, and
we repeat them here both as confirmation of his work, and to provide benchmarks for our
cell mapping study. Section IV uscs cell mapping and Poincare sections to identify parame-
ters for which a boundary crisis occurs, and to locate in phase space the relevant attractors.
Section V extends cell mapping to compute basins of attraction, and manifold crossings.

Both the new boundary crisis identificd in Section IV and Kautz's interior crises are studied.

II. Model Equation and Numerical Method.

The equation describing the dynamics of a driven Joscphson junction is given by“
¢ + ap + sing = 7 + Asin(wt) . (n

Here overdots denote derivatives with respect to time t. ¢ = ¢(t) is the phase difference
across the junction, a is the quasi particle damping term, given by a = I/‘/B-, where B is the

”, and 75 is the constant dc bias current. A and o denote the amplitude

McCumber paramcter
and frequency of the external driving force, respectively. Only the n-term has been variced
and the other parameters have been fixcd at the values: @ = 0.2, A = 10.198039 (for com-
parison with ref. 5), and « = 1.0. The dynamical equation (1) is solved numerically using a
fourth-order Runge-Kutta algorithm. The solution may be displayed in the phase plane as a
Poincare section where points (¢(t), (1)) are plotted after every period T = 27/w of the
drive cycle. Here ¢(t) is treated modulo 27, from —# to #. The Poincare map gives a good
geometrical view of the dynamics by whi;:h we can identify the diffcrent attractors. To study

the global behavior of the system, the basins of attraction of the different attractors must

be found. To do this by solving Eq.1 numcrically with initial conditions distributed uniformly




over a finite subsct of the phase plane is a very time consuming proccdure. A more efficient
way of getting the basins of attraction is to use the cell mapping method 719,

In the cell mapping method we divide an intcresting subsct of the phasc plane into cclis.
Let us for simplicity introduce the notation ¢ = X, and ¢ = X,. A finite rectangular subset
of the 2-dimensional phase space of Eq.1 is then divided into N rectangular cells. We shall
use uniform cells of width h, and height h,. If N; dcnotes the number of cells in the x;-di-
rection, and L, denotes the length of the subset in the x-direction, then hy = L;/N, .
Similarly, we have for the x, direction that hy = L,/N,. The cells are counted sequentially
beginning, for examp!e, at the cell in lowcst row to the {eft, counting along the lowest row,
and ending with the cell No. N = N; Ny in the uppermost row to the richt. The i'th cell yA
= (zil. ziz), i=1,2...N,is now defincd to contam all points (X, X5) which satisfy

i i i 1 .
zj'?hj SXj<2j+‘{hj j=12 . (2)

z; j=1.2, are the coordinatcs of the ccmter point of the ith cell. To get a cell to cell mapping
we integrate Eq.1 over one period T of the external driving force using the ccnter point z
of the i'th cell as initi»! condition. This is done for each cell i. The final state point after the
intcgration will lie either insidc an existing cell which can be identified according to Eq. 2
or outside the subset of interest. In the later case we shall introduce a sink cell, denoted Z°,
which then absorbs points escaping outsidce the region of interest.

By definition the sink cell is mapped into itself. To each ccll including the sink cell we
have now assigned an image ccll and the mapping so defined is denoted C. Let Z(1) be an
arbitrary initial ccll. After n applications of C, Z(1) is mapped into Z(n) and we write
Z(n+1)=C(Z(n)). The evolution of the system can be periodic in the scnse that a cell z'is

mapped into itsclf after K applications of C. Such a motion is called K periodic or a P-K




motion. The K different cells traversed in a P-K motion form a periodic group and the cells
belonging to this group arc cailed P-K cells. The cclls which eventually arec mapped into this
group through repcated application of C belong to the basin of attraction of this P-K group.

The evolution of the system from a given initial ccll can lcad to only three different
outcomes. 1) The initial ccll is itself a periodic cell, 2) the initial cell belongs to the basin of I
attraction of a P-K group, or 3) the initial cell is mapped into the sink cell. This elementary

analysis forms the basis for a very efficient unravelling numcrical algorithm designcd by C.S.

Hsu et. al. in Ref. 1. This algorithm has been used here to determine all regions of attraction
and their basins of attraction for Eq. 1. in a given subset of phasc space. After having made
the discretization into cells and detcrmined the ccll to cell map the system dynamics have
been reduced to simple sorting of integers which requires only a minimum amount of com-
puter resources. However, the simple cell mapping procedure has to be used cautiously. The
reason is that the discretization introduces errors which resuit in qualitative differcnces from
the original system. The cell map may find periodic groups which correspond to unstable
attractors in the continuous problem. Somc periodic groups with a high period may corrc-
spond to a chaotic attractor, or scveral groups may represent different parts of the same
attractor in the original system. These errors can be ameliorated by using finer grids or by
using the refincd cell mapping procedurcs described in Refs. (8-9), but they are inherent in

the discretization of phase space used in cell mapping.

IT1._Intcrpretation of the 1-V characteristic in terms of crises.

Before applying the cell mapping procedure, we shall give an interpretation in terms
of crises of the part of the I-V characteristic shown in Fig. 1. This I-V curve was obtained

by numerically solving Eq. 1 and plotting the bias current n versus the time average < ¢ > |

which is proportional to the voltage across the junction. The same I-V curve (with the same |




parametcrs) has been published by Kautz>® in another connection, hence a direct compar-
ison is possible.

In Fig. 1 n was varied fromn = 1.78 ton = 1.90 , and the other paramctcrs were fixed
at the values stated in the previous section. We focus on the vertical line scgmanet in Fig. |
at ihe valuc 10 on the voltage axis. It can be shown that along this line ¢ is phase-locked to
the oscillatory driving force. The question we address (and addressed by Kautzs) is, how is
the phase lock destroyed at either end of this constant voitage stcp? Kautz was abic to show
that the gradual departure at the top of the step is due to an interior crisis, but he left the
lower end unresolved. Note that the lower end involves a hysteresis loop, where the voltage
jumps back and forth between the stcp and some noisy curve as the current is changed very
slightly between n = 1.802 and n = 1.822. The hystcresis loop implies that two attractors
coexist in phase space, and suggests that a boundary crisis between these two attractors could
be involved.

This is shown more clearly in Fig. 2, where we have plotted ¢(nT) from the Poincare
scction at corresponding n-values, where T =—%)1 dcnotes the period of the external driving
frequency. From Fig. 2 it is evident that a chaotic dynamic state exists in the 5 -interval
1.78 <n<1.822 and this chaotic state causes the erratic form of the I-V charactenstic.

Coexistent with the chaotic dynamic state there is a simpie period one solution in the
n -interval 1.802<n<1.822 . Thc associated picce of the I-V curve is phase locked and the
voltage V = <¢> = 10 is strictly constant. The phase locked state is charactcrized by the
relation ¢(t + nT) = ¢(t) + 2m= and accordingly the voltage across the junction becomes
V=<é>= -':— X —%1'1 ."In the case of Fig. 1 m=10 and n=1, i.e. the junction is locked
on the step No. —n"l = 10. Whenqis incrcascd beyond 1.822 the chaotic attractordisappcars

and only the period one or phase locked state remains. The rcason for this bchavior is ap-

parcat from Fig. 2. Togcther with the stable period one state there cxists an unstable period




one hyperbolic point shown as a dashed curve and marked U-1. The uastable periodic points
shown in this figure and in the Figs. 4-7 have been Jocated with the Newton-Raphson algo-
rithm described in Ref. 12. When the chaotic attractor collides with this unstable periodic
solution, a boundary crisis occurs and_the chaotic attractor disappears. After the occurrence
of this boundary crisis oaly the phase locked part of the 1-V curve remains, as may be seen
in Fig. 1.

The interior crisis at the top of the voltage stép in Fig. 1 can also be discerncd in Fig.
2. Here we see a Feigenbaum sequence with period doubling bifurcations when increasing
n from 1.822 up to 1.888. At the first period doubling bifurcation we have m=20 and n=2,
at the next we have m=40 and n=4, and so on. This mcans that the junction remains on the
phase locked step rmmbcr—::l = 10, and even in the chaotic region, which follows the period
doubling bifurcations, the voltage across the junction remains constant. As the voltage is
determincd as a mean value <¢> , we cannot see from the I-V curve alone that the above
period doubling bifurcation followed by a chaotic window has occurred. However, at
n = 1.888 achange in the I-V curve is again observed. The voltage V dccreascs and becomes
irregular. From the Poincare section we notice that an unstable period three orbit marked
U-3 and created at n = 1.851, has collided with the chaotic region me’gtioncd above. This
collision results in an interior crisis and accordingly the chaotic regioﬁ expands suddcnly,
filling out a larger subsct of phase space. When this expansion occurs the junction is no

longer phase locked on step number 10.

IV__Cell ta cell mappine and boundary crisis.

We shall now apply the cell to ccll mapping to show in more detail the collision between
the unstable periodic orbit and the chaotic attractor in the n-interval { 1.80 ; 1.8325 ]. Figs.

Ja-c are phasc plane plots approaching the crisis, and in Fig. 3d, the crisis has occurred. All




of thesc plots show the conventionally gencrated Poincare maps as a multitude of tiny dots,
one dot for each cycle of the periodic driving force. The larger symbols represent various
periodic groups as found by the cell mapping mcthod. The small open circle labelled U-1 is
a saddle point as calculated by the Newton Raphson techniquc'z. No basins of attraction
are shown. The extended chaotic attractor made visible by the Poincare maps in Figs. 3a<
disappears in Fig. 3d bccuase of the crisis.

The gencral trend to follow in these figures, is that as  rises and we move from Fig.
3a to Fig.3b to Fig. 3c, a finger of the chaotic attractor moves toward the unstable saddlc
point. When the finger touches the saddle point the crises occurs, and the chaotic attractor
disappears, as in Fig. 3d. The becauty of the cell-mapping method is first, that it can find
unstable attractors. and second that it gives us a measure of confidence that we are following
all the rclevant attractors in phasc space.

In the cell to cell mapping we have divided the subsct [ =7 < x; < 7] x
[ -27<x,¢ 27] into NX x NY = 50 x 100 cells. In Fig. 3a 4 equals 1.80 and only onc
chaotic attractor cXists at this n-value. Howevcr, in the ccll to cell map we found S periodic
groups. For each of these groups the average voltage was calculated for the associated peri-
odic motion and the attractors were then sorted according to their voltages. In the original
system the voltage corrcsponding to a given attractor is an integer if biased on a phasc locked
state. To each phasc locked state there cxists only one attractor. Thercfore, when using ccll
mapping, we regard two or more attractors which are formally distinct as idcntical provided
their periodic motion give risc to the same integer voltage. In regions of chaos the chaotic
attractor will result in voltages which are non-integers.

The identification of chaotic'attractors with periodic groups is a little more subtle. Due
to the finitc number of cells we can only get periodic orbits when using cell mapping. How-

ever, we may identify a chaotic attractor with a periodic group if the group period is large




and the corresponding voitage is non-integer. As in the phase locked case, formally distinct
cell map groups will be considered to belong to the chaotic attractor, provided the voltage is
non-integer. (This will be the case even if the voltages arc not identical.) The oaly require-
ment is that the voltages are non-integer and that the Poincare map reveals only one chaotic
attractor for the parameter values under consideration.

As mentioned above we found 5 groups in the cell to cell map at n=1.80 (see Fig. 3a).
Two of these are a P-16 group with voltage V=8.750 and a P-6 .group with voltage V=8.501.
As the voltages are non-integer and as we know from the Figs. 1-2 that only one chaotic
attractor exists at n=1.80 the two periodic groups are artificially distinct and we shall regard
both of them as belonging to the chaotic attractor. In Fig. 3a these two groups together are
marked by crosses, and we observe that they fit well to the real attractor obtained from the
Poincare section. This means that the cell to cell map provides a fairly accurate picture of the
chaotic attractor even with suca a crude discretization grid as 50 x 100. Furthermore, the
cell map reveals a P-2 group, marked by downward pointing triangles, with voltage V=8.000,
(step 8), a P-1 group marked by a solid square with V=9.008, (step 9), and finally a P-1
group marked by an upward pointing triangle with V=10.003, (step 10). These periodic cell
map groups have been found artificially, and they arc not stable in the original model
equation (1). However, the above three steps or attractors are stable for n-values nearby.
We believe that there arc periodic transients or 'shadows’ of the above periods which the cell
map proccdure picks up. This fact is uscful when searching for attractors in a given parameter
region.

In Fig. 3b 5 is raised from 1.80 to 1.81 and from Figs. 1-2 two coexistent attractors
arc prescnt, a chaotic one and a periodic one with V=10. Six periodic groups have been
found by ccll mapping. There is a P-12 proup with V=8.498, marked by crosses, which is

clcarly associated with the chaotic attractor. Three other groups, marked in common with




down pointing triangles are associated with a shadow of a nearby V=8 attractor. Finally cell
mapping produced two V=10 attractors, in the form of a P-1 group and a2 P-2 group marked
by up pointing triangles ia Fig. 3b. The two circled triangles are the P-2 group.

Clearly, these last two groups correspond to step No. 10 in the continuous problem,
and arc not shadows. The P-1 group coincides with the period one orbit (marked by a dia-
mond on Fig. 3¢) obtaincd from direct numecrical simulations of Eq.1. The P-2 group is the
unstable periodic orbit crecated at the saddle-node bifurcation at n=1.802. It is casy to un-
derstand why the ccll map is able to pick up this unstable saddle point. If the saddle point is
approached along one of its two stable manifolds it will take very long time to reach :he
saddlc point. Therefore a cell around the saddle or very close to it may be mapped into itsclf.
In this case two cells close to the saddle have been mapped into themselves and their posi-
tions indicate with good accuracy the position of the saddle point. This has becn verified by
the Newton-Raphson iteration procedure for finding fixed pointslz. The exact position of the
unstable saddle point is shown by the small open circle in Fig. 3b.

In Fig. 3¢ n is raiscd to the value 1.82. The cell map procedure gives three periodic
groups on step No. 10, namely two P-1 groups and one P-2 group. One of the P-1 groups is
positioned at the unstable orbit and in Fig. 3c its position is marked by the lettering U-1.
We obscrve that the chaotic attractor (small dots) ncarly touches the saddle point U-1. so
that we are closc to the boundary crisis which occurs at n=1.822. The stable pcriodic orbit
determined directly from Eq.1 is marked by a diamond, and agrees well with the ccll map
result. Similarly the Newton-Raphson algorithm finds the unstablc saddle point to be Jocated
very close to the unstable point found by ccll mapping. In Fig. 3¢ the exact position is shown
by a circle. Furthermore, the cell to-cell map shows a P-22 group with V=38.634 and again

this large group fits well with the chaotic attractor obtained from the Poincare scction.




In Fig. 3d n bas becn increascd to the value 1.825 which is above the the value of n =
1.822 where the boundary crisis occurs. The chaotic attractor has vanished and only the
period one stable solution marked by a diamond is prescnt. However, the ccll map procedure
bas found 6 periodic groups. Two of them, marked with up triangles, correspond to step No.
10, and the one closest to the diamond mark is the stable period one solution, and the other
one is the unstable saddle point, still labeled U-1, which has just collided with the chaotic
attractor. The position of the unstable point found from the Newton-Raphson iteration
procedure is marked by a circle and again the cell map result shows excellent agrecment with
the Newton-Raphson algorithm. The other groups that the cell to ccll map has picked are
again shaows, the resuits of trans‘ients of real attractors which appear close to the n-value
of 1.825. These artificial groups are: one P-5 group with voltage V=9.000, a P-6 and a P-2
group with voltages V=8.004 and V=7.996, respectively, and finally a ‘chaotic’ P-7 group
with V=8.433. This P-7 group is the result of the chaotic tramsient duc to the chaotic
attractor which existed before the boundary crisis.

Fig. 3 clearly shows that a crisis occurs as the strange attractor touches the saddle
point, but why should such an event be termed a boundary crisis? The reason is, as shown

in the next section, that the saddle point lics dircctly on a basin boundary.

V. Basin boundaries and heteroclinic manifold crossings.

In this section we shall use the cell to cell mapping to illustrate heteroclinic tangencics
and crossings of the stable and unstable manifolds of saddlc orbits oan basia
boundaries?>*!3. Both the boundary crisis and the interior crisis will be treated. We will use
cell mapping to compute basins of attraction, and illustrate that the saddle points lie on basin
boundaries. We consider the subset[ =7 < x; < 7] x [0 < x5 < 1] which is divided nto

NX x NY = 100 x 100 cclls. Notc that the division into cclls is fincr in this case than pre-
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viously, therefore the cell to cell map will give considerably more precise results. We start

with the boundary crisis. Fig. 4 shows the basin of attraction (marked by dots) of the stable

period one solutioa on stcp No. 10, just at the n-value 1.822 where the boundary crisis oc-
curs. Note that the chaotic attractor just touches the border of the basin of attraction for the
No. 10 step. This "touching” is a tangency, as discussed below.

The attracting point is marked by the up triangle. The white rcgion consists of cclls
which disappear from the subset of interest and they are mapped into the sink cell. (Con-
sidering all of the phase plane, points in the white region actually belong to the basin of at-
traction of the chaotic attractor.) The period one saddle point (U-1) is marked by a circle
in Fig. 4 and lies on the borderline of the basin of attraction of the stable period one
attractor. This borderline is also the stable manifold of the saddle point (U-1). That is.
points on the basin boundary are attracted to (U-1). Oae branch of the unstable manifold
(along which points are repelled from (U-1)) is dirccted along the chaotic attractor. The
otber unstable branch extends toward the up triangle. We sec from Fig. 4 that part of the
unstable manifold, namcly the strange attractor, actually touches the stable manifold. the
basin boundary, in sevcral places at the samc time. Hence if the system begins in a state of
chaos oa the stange attractor, it will eventually touch the stable manifold of (U-1) and be
scnt to the stable fixed point attractor with V=10 represented by the up triangle in Fig. 4,
and this is the most complcte illustration of the boundary crisis.

From Fig. 4 this tangency of the strange attractor at (U-1) would be called a
homoclinic tangency, since only one saddle point is shown. However, since the mapping was
computed moduio 2 7, we actually have infinitely many saddlc points. In accordance with
ref. 2, we beiieve that the unstable manifold of a given saddle accumulates on the stable

manifold of the previous saddie point, and accordingly Fig. 4 shows hetcroclinic tangencies

when the boundary crisis occurs.




In Fig. 5, 7 has been incrcased to the value 1.823 which is above the value where the
boundary crisis occurred. The basin of attraction of the period one attractor, shown as dots,
has been obtained using the cell to cell mapping procedure. The crosses denotc periodic
groups that lie on the transient chaotic attractor which is a remnant of the stable chaotic
attractor for n less than 1.822. This traasicnt indicates hetcroclinic crossings of stable and
unstable manifoids. Points on the transient chaotic attractor will eventually come close to
the saddle bo'mt. marked by the circle in Fig. 5, passing it along thc unstable orbit which lies
in the basin of attraction of the stable period ogoe attractor. Thereby, the chaotic attractor
from Fig. 4 is destroyed. (That is, the attractor for the No. 10 step, marked by the up tri-
angle, is now the only stable attractor.)

Now we consider the intcrior crisis. Fig. 6 depicts the phase locked chaotic attractor
(solid line) as obtained from direct numcrical simulation of Eq.1 at n=1.886. This chaotic
attractor appears after the Feigenbaum sequence seen in Fig. 2. The ccll to cell map found
a P-17 group with V=10.000, a P-1 group with V=9.996, and finally a P-2 group with
V=10.001. These three ccll map groups all belong to step No. 10. The associated basin of
attraction for these three attractors is shown as dots. The cell map groups are marked by up
triangles, and they all lie, except for the P-1 group, exactly on the phase locked chaotic
attractor (solid line). From the Newton-Raphson algorithm we have identified the P-1 group
as the period one saddle point shown in Fig.2 and marked by a circle in Fig. 6. The interior
crisis occurs between n=1.886 and y=1.887 and what happens is that the chaotic attractor
collides with thc unstablc period three saddle’ shown as circles and labelled (U-3) in Fig. 6.
The period three saddle has been obtained by using the Newton-Raphson algorithm. Its tra-
jectorics arc shown as dashed curves in F‘ig. 2 (marked again by the lettering U-3) which also
indicates the collision between the chaotic attractor and the period three saddle. The chaotic

attractor is again a subsct of the unstable manifolds of the period three saddles. The stable




manifolds lic on the basin boundaries. From Fig. 6 we observe that the unstable manifolds
become tangent to the stabic manifoids at the n value where the intcrior crisis happens. For
n abovc this valuc the unstable and stabic manifolds interscct cach other resulting in an cx-
pansion of the chaotic attractor. This intcrsection is apparent from Fig. 7 where 5 has becn

increased to 1.888.

V1. Conclusions.

We have used cell to cell mapping to study and explicitly display a boundary crisis and
an interior crisis in a driven Joscphson Junction. Using a coarse ccll division the cell mapping
procedure will pick up remnant periodic and remnant chaotic transients in addition to the
original existing attractors. With finer ccil division we obtained very prccise pictures of the
tangencies and crossings of unstablc and stable manifolds during both a boundary crisis and
an interior crisis. This has been confirmed by calculating fixed points from the Newton-
Raphson algorithm and from Poincare sections.

When exploring the giobal behavior of the Josephson junction the ccll mapping pro-
ccdure provides a fairly accurate picture of the dynamics. Stable and unstable fixed points
and associated basins of attractions can be found cfficicntly and at a low computational cost.
The same applies to the strange attractors and their basins of attraction. When more dctailed
and accurate results arc nceded onc can use the information gained from the ccll mapping in
applying the more precise tools, such as the Poincare map and the Newton-Raphson itcration
procedure. This is particularly valuable in the latter case where a good initial guess for the

position of an unstab’e fixed point is necessary.
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Fig. 1 1-V characteristic for the paramcter valucs a = 0.2, A = 10.198039027, and

w=1.0.
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Fig. 2 Bifurcation diagram showing a boundary crisis and an interior crisis. The parameter
values used are as in Fig. 1. The unstabic pcriod one and period three saddles are

shown as dashed curves marked U-1"and U-3, respectively.
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Fig. 3 Poincare section of the chaotic attractor for Eq.1 at paramcter vaiues a = 0.2,
A=10.198039027, and w = 1.0. Periodic attractors obtained from the cell mapping
procedure are also shown using the subset [ —7 < x; € 7] x [ =27 < x5 < 27]
which have been divided into S0 x 100 cells. The avcrage voltage of the periodic
groups markcd by down pointing triangics. squares, and up pointing triangles. are §,
9. and 10. respectively, corresponding to stcp Nos. 8. 9 and 10. The crosses denote
periodic groups with non-intcger voltage. Stable periodic orbits determined directly
from the Poincare section are marked with a diamond and circles show period one
saddles dctermined from the Newton-Raphson algorithm. (a) n=1.80, (b) n=1.81

{c) n=1.382.(d) n=1.825.
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Poincare section of the chaotic attractor for Eq.1 at paramecter values a = 0.2,
A=10.198039027, and w = 1.0. Periodic attractors obtained from the cell mapping
procedure arc also shown using the subset [ =7 < x; s 7] x [ =27 < x5 < 27]
which have becn divided into 50 x 100 cells. The avcrage voltage of the periodic
groups marked by down pointing trianglcs, squares, and up pointing triangles, are 8,
9, and 10, respectively, corresponding to stcp Nos. 8, 9 and 10. The crosses denote
periodic groups with non-intcger voitage. Stable periodic orbits determined dircctly
from the Poincare section are marked with a diamond and circles show period one
saddles dctermined from the Newton-Raphson algorithm. (a) n=1.80, (b) n=1.81

(¢) n=1.82, (d) n=1.825.
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Poincare section of the chaotic attractor for Eq.1 at paramcter values a = 0.2,
A=10.193039027, and w = 1.0. Periodic attractors obtaincd from the cell mapping
procedure are also shown using the subsct [ =7 < x; s 7] x [ =27 < x5 g 27]
which have been divided into SO x 100 cells. The avcrage voltage of the periodic
groups marked by down pointing triangles. squares, and up pointing triangles, arc 8§,
9, and 10, respectively, corresponding to stcp Nos. 8, 9 and 10. The crosscs denote
periodic groups with non-intcger voltage. Stable periodic orbits determined dircctly
from the Poincare section are marked with a diamond and circles show period one
saddlcs dctermined from the Newton-Raphson algorithm. (a) 7=1.80, (b) n=1.81

() 7=1.82. (d) n=1.825.
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Poincare section of the chaotic attractor for Eq.1 at paramcter values a = 0.2,
A=10.198039027, and w = 1.0. Periodic attractors obtaincd from the cell mapping
procedurc arc also shown using the subsct [ =7 < x; s 7] x [ =27 < x; < 2]
which bave becn divided into SO x 100 cells. The avcrage voltage of the periodic
groups markcd by down pointing trianglcs, squares, and up pointing triangles, are 8,
9, and 10. respectively, corresponding to step Nos. 8§, 9 and 10. The crosscs denote
periodic groups with non-intcger volitage. Stabie periodic orbits determined dircctly
from the Poincare section arc marked with a diamond and circles show period one
saddles dctermined from the Newton-Raphson algorithm. (a) n=1.80, (b) n=1.81

(c) n=1.82,(d) n=1.825.
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Fig. 4 Hcteroclinic tangencies at the boundary crisis. 7=1.822, and the other parameter
values uscd arc as in Fig. 1. The basin of attraction for the period onc solution
(markcd by up pointing triangle) is shown as small dots. The circle shows the position

of the unstable period one saddlc point (U-1).
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Fig. 5 Heteroclinic crossings after the boundary crisis. n=1.823, and the other parameter

values used are as in Fig. 1. Notation as in Fig. 4.
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Fig. 6 Heteroclinic tangencies at the interior crisis. n=1.386. and the othcr parameter valucs

used are as in Fig. 1. Notation as in Fig. 4.
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Fig. 7 Heteroclinic crossings after the intcrior crisis. n=1.888. and the other parameter vaj-

ues used are as in Fig. 1. Notation as in Fig. 4.
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Abstract

Fluxons in long Joscphson junctions are physical manifestations of traveiling
waves {hat connect rest states of the model partial differential equation (p.d.c.),
which is a perturbed sinc-Gordon equation. In the reduced travelling wave ordinary
differential equation (o.d.e.), fluxons correspond to licteroclinic connections be-
tween fixed points. In the absence of surface impedance effects, fluxons
persist in parameter regimes until the fixed points disappear, after which the
system “switches” to another configuration. It is known that the presence of
surface impedance produces a singular perturbation of the model equation, to-
gether with a new phenomenon: the fluxons switch in parameter regimes before the
fixed points are lost. Why this occurs is unknown, and is the focus of this paper.
Two disjoint possibilities are: 1) instability: fluxons still exist, but they become
unstable in the p.d.c. due to surface impedance effects; 2) nonexistence: the fluxons
fail to exist, ecven though the fixed points remain. Ilere, we provide compelling
numecrical evidence for the second sccn:iﬁo, characterized by a global bifurcation in
the travelling wave phase space: a breakdown of heteroclinic orbits, undetected at
the lacal linearized level. Morcover, this global o.d.e. bifurcation occurs at param-

cter values consistent with the p.d.e. switching phenomenon.
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[. Introduction

The propagation of magnetic flux quanta (fluxons) in long Josephson
tunnel junctions has attracted research interest, both theoretically, in connection
with the intrinsic nonlinear dynamics involved, and practically, in view of potential
applications in high-performance clectronic systems [1]. Fluxons in Josephson
junctions correspond to quasi-soliton solutions of the underlying model equation,
which is a sine-Gordon (sG) equation modified by the addition of dissipative and
energy-input terms [2]. Such terms destroy the perfect integrability of the pure
s(G; system and thus pose questions regarding the existence and stability of fluxon
solutions in various regions of the paramecter space of the model equation.

The most direct experimental signature of fluxon propagation in long
junctions is provided by the so-called zero-field steps (ZFS’s) in the current-voltage
(I-V) characteristics of such devices. These are a set of rather brusque, approxi-
mately constant-voltage spikes in the I-V characteristic; a typical experimental
tracing is shown in Fig. 1. Extensive analytic, numerical, and experimental
investigations have established the following basic facts about ZFS’s:

a) The ZFS order number corresponds to the number of fluxons participating
in the associated dynamic state, i.e., ZI'S1 is due to one fluxon, ZFS2 to two, etc.
h) The voltage on a ZFS is strictly proportional to the average fluxon propagation
velocity.

¢) The formation of a fluxon state, and hence of a ZFS, at low current values
is due to a parametrically excited instability of the so-called McCumber state,
which is the uniform background state that, in Fig. 1, corresponds to the curve
lahelled MCB and to its extrapolation to lower voltages.

d) For a given junction at a given temperature cach ZFS terminates abruptly at a
well-defined current value that is typically 0.3 - 0.8 times the maximum zero-
voltage current (labelled /, in Fig. 1); at this current value the junction switches
o a higher-voltage state (indicated by arrows in Fig. 1).

Fact a) accounts, for example, for the approximately ecqual voltage spacing between
adjacent ZFS’s. Fact b) implies that raising the bias current drives the fluxons
toward an asymptotic limiting velocity. Fact c¢) explains the structure near the
“feet” of ZFS’s. Fact d) is the focus of the present paper.

To understand the mechanism that determines the height of ZFS’s is of
considerable importance to the experimentalist, and several theoretical approaches
have heen proposed in the literature. All are based on analysis of the perturbed

«G; equation, which, in normalized form,is [2]

2
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hex = Gy — sin ¢ = ad)l - ﬂ¢xxl -7 . (1)

Here, ¢(x, ¢) is the usual Josephson phase variable [1] , x is distance along the
junction normalized to the Josephson penectration length, ¢ is time normalized to the
inverse of the Josephson plasma angular frequency, and subscripts denote partial
derivatives. It is assumed that the junction geometry is long and narrow, so that a
I + 1 dimensional model is appropriate.

The perturbation on the pure sG structure is characterized by the parameters
v, ff and y . The term in « represents shunt loss due to quasiparticle tunneling (here
assumed ohmic), the term in [} represents dissipation due to the surface resistance
of the superconducting films comprising the junction electrodes, and y is the spa-
tially uniform bias current normalized to the maximum zero-voltage Josephson
current. It is worthwhile noting that the term in /J constitutes a singular per-
turbation of Eq. (1). The necessity of including this term in the model was first
suggested by Scott [ 3], and accumulated experience has amply demonstrated that
even though its inclusion represents a mathematical complication, its presence is
essential for the description of real, physical junctions.

It is necessary also to prescribe appropriate boundary conditions in order
to specify completely the problem. Physically reasonable boundary conditions
emerge from considerations on the junction geometry. Two commonly studied
configurations are the so-called overlap geometry and the annular geometry

[ 1.4]. For the overlap geometry appropriate boundary conditions are
h(0,1) = ‘/)x(Lv ’) =n, (2)

where L is the normalized length of the junction and 5 is normalized measure of the
external magnetic field applied in the plane of the junction perpendicular to its long
dimension [2] . For the annular geometry the appropriate boundary condition is

one of periodicity:
dlx + L, 6) = ¢o(x, ) + 27an , (3)

where 7 is the difference between the number of fluxons and antifluxons present in
the junction (since the junction is a closed loop n is a conserved quantity).
Overlap-geometry junctions have undoubtedly received more experimental atten-
tion since the fabrication of experimental samples is somewhat simpler for such
devices. From the theoretical point of view, on the other hand, the annular ge-

ometry offers the advantage of a simpler dynamics due to the absence of the
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fluxon-antifluxon reflection effects that occur at the finite ends of overlap junc-
tions. Fluxon propagation on an annular junction may be described by a travel-
ling wave reduction of Eq. (1). Specifically, assuming a travelling wave solution

of the form

Plx,0)) = O(x —ut) = O(&) (4)

in which 1 is an arbitrary, constant propagation velocity (¥ > 0), we can reduce
Eq. (1) to the o.d.e.

(l—:lz)d)—sin<b=-—aud)+/3u&3—y (5)

where overdots denote derivatives with respect to {. Moreover, if the normalized
circumferential fength, L, of the annular junction is large compared with unity,
the situation may be well-approximated by the infinite-length limit. In this case,
fluxons correspond to heteroclinic connections between fixed points of Eq. (5).
Our present study of the mechanism that determines the height of ZFS’s is
based on a detailed numerical analysis of just this case.

To put our work into a proper perspective, we note that various ap-
proaches to this problem have been reported in the literature. Solutions of Eq. (5),
with / =0, a = constant, (1 — «?) >0, and n =1 , were studied many years ago in
other contexts [5,6]. The salient features that emerge from these studies are:
For given a, y, and u, there exists at most one periodic solution of Eq. (5). For
v > | , a periodic solution always exists. For y <1 , a periodic solution exists
provided that « < «_, where o, u /Jm{ ~ |.2. Moreover, these periodic sol-
utions are stable (in the context of the o.d.e.).

The carliest (to our knowledge) application of Eq. (5), with f/ £ 0 and
n > 1, to the problem of fluxon propagation in long Josephson junctions was
reported in 1968 by Johnson [7], who integrated Eq. (5) using a hybrid com-
puter. Johnson employed a two-valued, piccewise-constant, voltage-dependent a,
and he used physically reasonable estimates for the parameters «,, o, and [/ . He
found values for y,,,, in the range 0.3 - 0.6, with y,,, a decreasing function of the
order number, n, of the ZFS’s, as is normally observed experimentally (see Fig.
1). .Johnson’s work, unfortunately, was never widely publicized, perhaps because
at that time ZFS’s had not yet been observed experimentally.

Parmentier and Costabile [ 8] showed that Eq. (5) can be integrated
analytically for f =0 and « = " | §,| , i.e., a dissipation coefficient proportional to

the ahsolute value of the voltage, leading to a quadratic, rather than ohmic, dissi-
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pation. Their analysis gives y,,,~1 , but with y,_. an increasing function of 1.
A qualitatively very similar result was found by Marcus and Imry(9] by inte-
grating Eq. (5) numerically with f =0 and « = constant. A significant differ-
ence between the results of Refs. 8 and 9 and those of Johnson [7] is that the
former considered n-periodic solutions of Eq. (5) for a finite-length annular junc-
tion, whereas Johnson considered n-bunches of fluxons for an (effectively)
infinite-length junction. Elementary topological considerations, in fact, show that
n-bunch solutions (n > 1) of Eq. (5) in the infinite-length limit cannot exist if
fi=0.

An approach used by several authors is a Fourier-Galerkin multi-mode
decomposition of Eq. (1), with the boundary condition of Eq. (2), together with a
solution of the resulting multi-mode equations by means of the resonant Krylov-
Bogoliubov approximation. The pioneering work in this direction was that of
Takanaka [10], who considered a single-mode approximation with f=0 and
x = constant, in the absence of applied magnetic field (5 =0). Chang et al.
[ 11] extended this to a two-mode approximation, also with f =0 and n =0.
Finally, Enpuku et al. [12] presented the general N-mode approximation, with
o. # and n all different from zero. In all cases, this approach gives y,,, <1 for
7ZTS1 (the only case considered), and, as might be expected, the results improve as
the number of modes used increases.

Linear stability analyses of travelling wave solutions of Eq. (1), i.e., sol-
utions of Eq. (5), with the boundary condition of Eq. (3), for / =0 and « = con-
stant, were given by Burkov and Lifsic [ 13] and by Biittiker at al. [14]. Burkov
and Lifsic considered junctions of arbitrary length with n > |, whereas Biittiker
at al, focused on the infinite-length limit with » = 1. Burkov and Lifsic conclude
that periodic fluxon solutions of Eq. (5) are stable (in the context of the p.d.e.) for
n < 1. Biittiker et al. show that the n = | fluxon solutions on the infinite-length
junction are stable for 0 <y < [. Since, as pointed out by Marcus and Imry [9],

(for 1 =0) y = yn foru— 1, and

Yenax XA+ (27!01/1/L)2 (6)

the two results are consistent.

An approximation that permits analytic solution of Eq. (5) is to replace
the nonlinear term, sin @, with a piccewise-linear sawtooth function. Sakai and
Tateno [ 15] used this approach to calculate periodic solutions of Eq. (5) with

' = 0,7 = constant, and » > 1. Their analysis gives




Ymax = COth(L[2nan), (7N

which, although quantitatively different, is qualitatively quite similar to Eq. (6); in
particular, y,,, — | in the infinite-length limit. The piecewise-lincar approach was
extended by Sakai and Pedersen [ 16] to the } = constant, a = constant, n = | case
in the infinite-length limit. Their work showed that, for f} larger than a certain
threshold value, y,,, decreases with increasing /. Sakai [ 17] further extended this
approach to obtain 2-bunch solutions of Eq. (5) in the infinite-length limit. The
results in this case are quite reminiscent of those obtained by Johnson [ 7]

Perturbative methods have been employed to calculate the y — u re-
lation for n = 1 solutions of Eq. (5) in the infinite-length limit [4,18,19]. The
procedure, in all cases, involves selecting a solution ansatz from a related, but
simpler, problem and imposing a balance between the average power lost to
dissipation and that furnished by the bias current. McLaughlin and Scott [4]
used an unperturbed sG kink as a solution ansatz. This ansatz gives reliable re-
sults for y << [, but it breaks down at high bias, giving y — oo for v — 1.
Ferrigno and Pace [18] improved this result by incorporating into their ansatz
the shift of the sG ground state due to non-zero y and the limited (i.e., non-
l.orentz) contraction of fluxons due to a /=0 and a = constant dissipation.
Their result reduces to that of McLaughlin and Scott for y << |, but it gives
y—1 for u—1. A related approach, with similar results, was reported by |
Pagano et al. [19], who alsu :learly pin-pointed the fact that the failure of the
perturbative approach to capture accurate values for y,,, in the presence of a
non-zero fi-loss term is attributable to the fact that this loss term causes a sig-
nificant distortion of the fluxon waveform that is not well-described by the
ansitze empioyed.

A frequently used approach is the direct numerical integration of Eq. (1),
with boundary conditions given either by Eq. (2) or Eq. (3). One of the earliest
efforts in this direction was that of Nakajima et al. [20], who integrated Eq. (1),
with n =0 in Eq. (2), for various values of « and f}, and initial conditions corre-
sponding to various values of n, using a finite-difference scheme. Further results
were reported by Marcus and Imry [9:], Emé and Parmentier [21], and Lomdahl
ct al. [2] An important contribution was that of Davidson et al. [22] , who fo-
cused their attention on the fJ-loss term, thus providing a stimulus for a number
of successive works. Perhaps the most detailed work to date is that of Pagano

ct al. [23], who considered the dependence of y,., on «, ! and L for both the
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overlap and the annular geometries. A careful reading of the various works
cmploying the direct numerical integration approach reveals a number of quanti-
tative discrepancies in the determination of y_,,. These may be attributed to the
following two causes: 1) Discretization errors: excessively coarse spatio-
temporal grids used with finite-difference algorithms tend to give values for
Ymax that are lower than the true values; 2) “Non- adiabatic” parameter vari-
ations: increments in the bias current, y , applied as temporal step functions
and/or initial conditions chosen ”“too far” from the final fluxon waveforms also
tend to cause premature switching, i.e. depressed values for y,,,.

The body of existing literature on the subject, reviewed briefly above,
allows the formulation of the following working hypothesis: In the absence of a f}
-loss term, y,,., = | for n =1, both for infinite-length annular-geometry junctions
and for finite-length overlap-geometry junctions. For finite-length annular-
geometry junctions, the n -dependence of y_,, is given approximately by Eq. (6)
or by Eq. (7). In the presence of a fi-loss term, y,_,, in all cases is reduced to lower
values. We propose herein to examine the mechanism responsible for this re-
duction for the case of n = [ in the infinite-length limit. Specifically, we develop
refined numerical procedures that: 1) reliably determine a fluxon solution
(heteroclinic connection) when it exists, in the form of a numerical continuity proof;
2) determine an apparent numerical breakdown of the heteroclinic connection as
parameters in the equation are varied, corresponding to a qualitative change in the
numerical continuity diagnostic; 3) rule out the breakdown of the connection due
to local phenomena (such as behavior of the linearized eigenspaces at the fixed
points); and 4) thus lead us to conjecture a global bifurcation phenomenon for
fluxon switching in the presence of surface impedance effects. The precise math-
ematical nature of this global bifurcation is an open problem. Moreover, this paper
represents a step toward the development of general purpose codes to reliably detect
existence and breakdown of orbits homoclinic or heteroclinic to hyperbolic fixed

points, in particular when oscillations are present.

I1. Reduction to the travelling wave o.d.e. and phase space dis-

cussion

The justification for using the reduced travelling wave ode, Eq. (5), to
determine vy, for annular-geometry junctions derives from information obtained
via the numerical integration of Eq. (1), with the boundary condition of Eq. (3).

Typically, fluxon solutions of Eq. (1) are easily found numerically, with a fairly

9




large computational domain of attraction (except when y — y_,,). If we decompose
Eq. (1) into Fourier spatial modes, we can define a mode phase velocity as

Wy = — Fm(‘bl)/Fm(d)x)» (8)

where F, (V) is the m’th component of the spatial Fourier transform of Y. During
steady propagation it is observed [ 23] that all of the u, tend rapidly to a common
asymptotic value, which is just the velocity u« of Eq. (5).

We may note that Eq. (5) is invariant under the transformation

P = -0, y=—y 9)

Consequently, no loss of generality is incurred by imposing y > 0 .
For y < 1, Eq. (5) has two classes of fixed points:

0y p 1 = arcsin(y) + 2jn, d)2j+, =0, &)2/'+l =0 (10a)
and
®y = n — arcsin(y) + 2jn, Dy =0, y=0 (106)

wherej=0,+ 1,4+ 2,.., and 0 < arcsin(y) < n/2. For y> 1 no such fixed points
cxist. The linear stability of the fixed points of Eqs. (10a,b) is determined by the

7eroes of the polynomial

Py == Pul® + (1 =) P +auld £ 1 —5* (11)

where the plus sign before the last term holds for the fixed points of Eq. (10b) and
the minus sign for these of Eq. (10a). Elementary analysis shows that P (1) has
one positive real zero and cither two negative real zeroes or two complex conjugate
zcroes with negative real part, whereas P_(1) has one negative real zero and either
two positive real zeroes or two complex conjugate zeroes with positive real part.
The fixed points of Eqs. (10a,b) correspond to time-stationary, space-independent
solutions of Eq. (1); equivalently, they correspond to the equilibrium solutions of
a plane pendulum subjected to a constant torque. From this analogy, it is clear
that the fixed points of Eq. (10a) correspond to stable static solutions and those
of Eq. (10b) to unstable ones (in the context of the p.d.e.). Consequently, stable
fluxon solutions of Eq. (1) correspond to heteroclinic connections between the fixed
points of Eq. (10a). Heteroclinic connections hetween the fixed points of Eq.

(10b) also exist; however, these do not correspond to stable fluxons in the p.d.c.

8




In the limit y — 1, P,(1) and P_(4) coalesce. In this case zeroes are 4 = 0 plus one
positive and one negative value.

Tie numerical results presented in the following section show that for
each y < y,., there is a unique «(y) such that there exists a connection from ®,
to {,. This connection corresponds [ 23] to a stable single-fluxon solution of Eq.
(1). Likewise, there is a unique, but diffcrent, u(y) for the existence of a ®, to @,
connection. Two examples of siich connections are shown in Figs. 2 and 3. More-
over, there exist still other heteroclinic connections, corresponding, for example,
to bunched multi-fluxon solutions of the p.d.e., but these are not investigated fur-
ther herein.

To be specific, we now fix the particular values
x =0.18, and f=0.10 (12)

(as will be seen in the following section, this choice is less restrictive than at first
might appear). With these values, all linearized ecigenvalues are real for
0<y < 0.4, which yields non-oscillatory heteroclinic orbits. For 0.4 <Y < Vi
there are two complex conjugate eigenvalues, which yields in the corresponding
solution an oscillatory overshoot phenomenon in the asymptotic approach to the

fixed point.

1. Numerical Global Connection Curves.

In the previous section we have studied the fixed points of Eq.(5), which de-
scribes the travelling wave solutions of Eq. (1). From the study of the linearization
near the fixed points we have deduced the behavior of the flow near the equilibrium
points. This information, though important in determining the role of the
perturbative parameters a, / and 1y, docs not determine the existence of global
connections between the fixed points.

In this section we first analyze the symmetry and invariance properties of Eq.
(5) in order to obtain useful information on the existence of the global connections.
Then the numerical methods and results are presented.

There are two obvious transformations which leave Eq. (5) invariant: One,
F.gs. (9), has already been indicated in the previous section. The other transfor-

mation is:

W= —u, = -9 (13)




which provides a numerical advantage, by exploiting “time” reversal, in computing
the global connection curves. For example the orbit which leaves the fixed point
(b, along the two-dimensional unstable manifold, /4(®,) , and connects to @, along
the one-dimensional stable one, Wi(®,) , is intractable numerically in forward time.
One would need to search over all directions leaving Wy(®,) . However, by re-
versing time via Egs. (13), one shoots nunerically along the unique direction,
Hi(d,) .

Another invariance of Eq. (5) is given by a generalized Lorentz transforma-

tion

¢ = flu)§ (14a)
o= L1 - (1 = ud f"(u)]‘i‘ (14b)
af = zlz_l' i) a (14¢)
fr=-5rwp (14d)

where f{) is any real function satisfying 0 < fX(u) < (1 — u?)-' for u? < | and
0 < flu) for u? > 1. This transformation gives a scaling law in the parameters «
and /} which can be used to extend the results contained here for fixed o, f} .

An important invariant transformation is

¢ = flu)¢ (15q)
D''=n—->D (158)
1

o= [+ (1 = uz)jz(u)]T (15¢)
o = — I—lll,—j(u)a (15d)
fr==-=rwp (15¢)
with fli) real, fln) # Oforw? < 1,and 0 < fA(1) < (1 — 1) 'foru? > 1. In
the special case flu) = — | and ¥ = | we find the transformation

o= = ¢ (f6a)
D'=n - O (16h)
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' =1 (16¢)
a = a (16d)
pr=p. (160)

This invariance property implies that, for « = | , either both connections ®, to
¢}, and P, to P, exist simultaneously or clse neither exists. As suggested in Fig. 2
and indicated more clearly in Fig. 4 this fact corresponds to the intersection, at
n = 1, of existence curves of @, to @, connections and of ¥, to O, connections,
at values of y less than unity. This is in contrast with the f = 0 case: in that case,
n =1 only for y = |, and the fixed points themselves coalesce.

We proceed now to discuss the numerical determination of these global con-
nections. The details are deferred to the appendix, but we will describe the main
features. We employ a shooting method as follows : For fixed a, f as in Eq. (12)
we first choose a value of y € [0, 1], beginning near 0. In order to seek a con-
nection from @, to ®, we exploit the “time” reversal symmetry (13). That is, rather
than vary over all directions emanating from Wy(®d,) , we shoot from ®, along the
unique direction Wj(®,) approximated by the stable cigenvector at ®; . The nu-

merical code iterates trying to minimize over « the distance function d(u)

min
dp) = o Ty oz V@ = o)’ + o} + @, . (17)

= having a large enough value. The absolute minimum, d,,,'(ﬁ) , if sufficiently close
to (0, gives a candidate for the velocity value associated to the ®, to @, connection.
We then refine the iteration steps on this /i in order to exhibit that d, (i) can be
brought arbitrarily close to zero.

At this point we implement an additional numerical algorithm to reinforce
that a fixed point connection has been found. Shooting methods for connections to
stable fixed points are highly stable numerically, whereas connections into unstable
fixed points are numerically unstable. The final algorithm we use is a numerical
continuity argument which is applicable for shooting into a one-dimensionally un-
stable fixed point. We construct a sphere of radius R around the fixed point @, .
The value of R is chosen small enough ( R < 0.1 ) that a linearization of the flow
inside the sphere is appropriate. When the orbit approaching @, intersects the
sphere, we identify the intersection point D = (D', ¢, &3') as the initial condition

for the evolution in the linearized space. The approach into the sphere about @ is




always nearly tangent to the stable manifold, which defines an equatorial plane for
the sphere. The departure will necessarily be transverse to this plane, along the un-
stable manifold, and will either be out the top (the “northern hemisphere”) or bot-
tom (the “southern hemisphere”) of the sphere. We can then solve analytically the

linearized o.d.e. :

(1 —uz)(f)—sin(d>j) —cos(CDj)(D=-au<i)+ﬂu&') -y (18)
obtaining
@) =Ae't + BeMt 4+ ceM 4 @, (19)

where 1,, 1,, and 1, are the roots of P (1) (Eq. (11)) and A,B, and C are deter-
mined by the initial conditions : 6(0) =d' . In our case, i.e. the oscillatory
heteroclinic otbit and j=1 ,we have A, =k > 0,4, = Li=u+iw ,where u<0
(note that, by using the transformation of Eqs. (13), the sign of the real eigenvalue
can always be taken positive). The local behavior of the solution will then depend

on the value of A, which can be expressed simply as :

1 &~ 2k’ + (@ - D)k + 0?) 0)
B (u — k)2 +w?

If 4 =0 the solution ® will tend toward @, , while for 4 # 0 it will diverge (hrough
the “top” of the sphere for A > 0 or through the “bottom” of the sphere for 4 < 0.
We iterate u, in a neighborhood of #, to show that for u* > i the solution diverges
in one direction, while for u- < 4 it diverges in the other direction. This provides a
numerical continuity diagnostic. When the continuity argument and the shooting
method both imply a connection we accept this as numerical proof. By iterating on
y this process yields the @, to @, and the ®, to ®, connection curves of Fig. 4. We
remark that the connection curves intersect at 1« = | as discussed earlier. More-
over, as can he seen in Fig. 4b, these curves persist past u = | contrary to the
fi = 0 case. (This result was also found by Sakai and Pedersen [ 16] for a related
system where the sine-term is replaced by a piecewise linear approximation). The
existence of a stable fluxon solution propagating at a velocity u > | might at first
scem surprising, but it is simply a consequence of the fact that, with a non-zcro
i —term, Eq. (1) is no longer hyperbolic. Fig. 5 shows such a stable fluxon solution,
obtained by a full simulation of Eq. (1) with o« = (.18, / =0.10, and y = (.888. The

velocity here, measured as described in the discussion surrounding Eq. (8), is
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u=1.0018. In the § = 0 case u approaches | as y approaches | corresponding to
the coalescence of @, and ®,. Beyond this point the fixed points disappear, so that
the termination of the global connections coincides with this local degeneracy.

The fundamental result of this paper is the simultaneous termination of the
fixed point connection curves of Fig. 4 at the critical value y* ~ 0.8877 ( for the
chosen values of «, and /). For y > y* the numerical code cannot reduce the dis-
tance function, dd,j(u) , arbitrarily close to 0: in fact dy(u) reaches a minimum
bounded well away from zero. Fig. 6 shows the dramatic jump observed in this
minimum distance function at y = y*. We emphasize that this phenomenon occurs
simultaneously for both connection curves, which are computed independently. We
also emphasize that this critical y* where the fixed point connections fail to exist
numerically does not correspond to any local bifurcation. Fig. 7 shows that there is
no signature of a bifurcation in the linearized eigenspace at @, .

We therefore conclude that the termination of these connections corresponds
to a global bifurcation in this o.d.e. phase space. It remains to be determined how
this breakdown of heteroclinic orbits is reflected topologically.

We recall also that the critical value y* is consistent with the numerical
studies of the full p.d.e. (Eq.(1)) reported in [23]. In this study the global
bifurcation was shown to result in the switching from the fluxon state to the running

mode state.

Discussions and Conclusion

For Josephson junctions with surface impedance effects, we have provided
compelling numerical evidence that the fluxon switching phenomenon is a nonex-
istence phenomenon, as opposed to an instability mechanism. Mathematically, this
scenario is described by a global bifurcation in the phase space of the reduced
travelling wave o.d.e.

The phenomenon which we numerically document here is the breakdown of
heteroclinic orbits in a three dimensional dynamical system, undetected in the
linearized eigenvalues of the associated fixed points. Mathematical methods have
heen developed for detecting such global phenomena (see, for example, the text by
Guckenheimer and Holmes [24] ), but far dynamical systems which do not include
our example. Similar phenomena have been studied extensively in models of nerve
propagation [25 - 27] , reaction-diffusion equations [ 28 — 30] , and population

growth [31] . The analytical success in these works rests mainly with proving ex-
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istence of global connections between fixed points with purely real linearized
eigenvalues. In our example, the heteroclinic connections persist well into the
oscillatory regime. Moreover, these rigorous proofs referenced above do not shed
light on the breakdown of heteroclinic connections. Qur paper provides a model
mathematical example for this global bifurcation phenomenon, and poses a chal-
lenging problem to prove the scenario we indicate here.

Additional problems are suggested in this study, related to the specific exam-
ple and (o general computational algorithms. Higher order connections between
fixed points separated by integer multiples of 2n are known to exist and also exhibit
switching. We have not investigated these states, but surmise that they also switch
due to global bifurcations.

Another area touched upon here and that necds development is the con-
struction of optimal numerical algorithms that establish when a global connection
exists, accurately compute it, and then detect global bifurcations as we have illus-
trated for our example. Global connection algorithms are available for connection
from unstable to stable fixed points [32], but the problem is considerably more

delicate when orbits connect between unstable fixed points.
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Appendix

We take as initial condition for the integration of the ¢, to ®, connection of
Eq. (5) the vector D= @3 + a(f),, , where 5),, is a unit eigenvector associated to
117:(<D,), (which, under the transformation of Eqs. (13), becomes one-dimensionally
unstable), and ¢ < 0.01 . As emphasized by Miura [27], it is essential to guarantee
that ¢ is small enough that the results of the integration do not depend on its value.
For all of the calculations reported we have checked this by reducing ¢ until no
changes resulted in the computed solution ( ¢ down to 10 °).

Once the initial condition is chosen, the orbit is computed by integrating Eq.
(5) using a sixth-order, variable step-size, Runge-Kutta method [ 33]. This routine
has a control over the global error; for all of our computations the global error has
been kept sufficiently low that it did not affect the results (typical values of the
maximum global error range from [0 * to [0 % ). At each “time” step in the inte-
gration the distance d(u) is computed. The integration is carried on until the orbit,
after a first approach to @, , diverges away from it. The minimum distance of ap-
proach, d,, (1) , together with information on “overshooting” or “undershooting” of
the solution, is then used to determine the next trial value of «. The shooting algo-
rithm is repeated several times, each time reducing the interval of u -values scanned
over, until the value # is found to nine significant digits. This procedure is illustrated
in Fig. 8, which shows d(u«) vs. Au on three different scales, where Au is the variation
of u about ;7 , for the parameter values « = 0.05, f = 0.02,y = 0.7.

Since d,, (1) will never be exactly zero because of the finite precision of the
integration, this procedure, by itself, does not constitute a proof of the existence
of a connection. For this reason, we next pass tc the continuity diagnostic described
in Section IH1: The velocity u is varied around i (nine significant digits), and the
corresponding value of A is computed. If A changes sign crossing # , this strongly
implies that there exists a value of u for which A = 0, thus demonstrating the ex-
istence of an orbit that connects to @, .

Analogously to the discussion regarding the choice of the parameter ¢ in the
initial condition, we note that a similar consideration applies to the radius, R, of the
sphere constructed around @, . As was done for ¢ , we have reduced R until no
changes resulted in the computed solution.

A similar procedure is used to locate the (O, to ®, connection, shooting out
of 0 . The procedure could, presumably, also be used to find higher-order con-

nections (D, to @, etc.) but we have not yet attempted to do so.




2 ——

An indication of the overall accuracy of our numerical scheme is suggested in
Fig. 2: the theoretical discussion presented in Section III (Eqs. (16) et seq.) shows
that simuitancous @, to ®, and ®, to ®, connections should exist for » = 1; nu-

merically, we find these simultaneous connections for u = 0.999999872.
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Figure captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

2a

2h

3a

4a

4b

5

6

7

Experimental I-V characteristic of a long Josephson junction with overlap
geometry. The critical current /, and six ZFS’s are shown. Arrows indi-

cate the direction of the voltage change during the switching.

®, — O, connection (full curve) and ®, — ®, connection (dashed curve)
projected into the (¢, ¢;) plane as obtained from numerical integration
of Eq. (5). « =0.18, 8 = 0.1,y = 0.883442, u = 0.999999872,

Same connections as in Fig. 2a but projected into the (¢, ¢,,) plane.

Phase space projections into the (¢, ¢,) plane of the orbits leaving ®,
and O, 0 =0.18,=0.1,y=0.88, u = 0.998733778 . For these parani-
eter values only the ®, — @, connection exists.

Same as Fig. 3a but projected into the (¢, ¢;;) plane.

Locus of the ®, — ®, (a), and of the ®, — ®, (b) connections in the
y—u plane near u=1. yp*~0.888 is the switching bias value.
a=0.18,=0.1 .

Detail of curves of Fig. 4a.

3-D picture of the numerical solution of the p.d.e. Eq. (1) showing a stable
fluxon moving with a speed larger than unity. « =0.18 , f=0.1,
y = 0.888 , u = 1.0018.

Locus of the ®, — @, (full line) and the ®, — O, (dash-dotted line) con-
nections in the y — u plane near u = 1. Also shown are d, (dotted line)

and d,,,z (dashed line) vs y.

Roots of P,(4) (a,b) and P_(1) (c,d) along the locus of the &, — @, (a,c)
and the ®, — @, (b,d) connections. The real root (dash-dotted line) and
the complex conjugate roots (full line = real part, dashed line = imagi-
nary part) are shown vs y. a =0.18,/1=0.1 and y* ~0.8877 is the

switching bias value
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Fig. 8

dy, ¥s Au at various scales. « =0.05, §=0.02,y=07,u= i+ Au,
it =0.9956555358 is the velocity value at which the ®, — ®; connection
exists. (a) shows a false local minimum at Au~0.00015 , (b) shows an-
other false local minimum at Au~ —2 x 10 7, (c) shows the true minimum
(Au =0).
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fbhetract

A simple deriveticn of the smasll cscillaticn frequency
earourd 4n-kink sclutions cof the double sine-Gordnnmn ecustion
is preceried. Small correcticns to these frequencies due to
anharmonic effects are aleo numerically and aralytically
investigeted. The enmelysls ic besed on energetic:
ccneiderations erd on the mechanical interpretaztion cof e

cn-kink as two point particles cennected by a spring.




1. Introduction

The double sine-Gordon equation (DSG)

~—a
f—

+ X,gind + ,./2 sin(¢/s2) = O (

hae received much sttention during the past years beceuse cf
ite conmection with several physicsl phenomens such az gpin
dymarics of superfluid “He (1], commensurate-incommensurate

rhase trancitions (2], megnetic chains [33, domain wslls [4],

etc. In both limits A, = O and Awx = 0 2quation (1) reduces tc
tre well-known sine-Gordon equation (SG) with exesct scliton

lutions., For A; # 0 end 2. # O equation (1) hes difierent

<

I

clacsees of =olitary weve coluticng which underge weelhly
irelestic scattering [(5]. Among these solutions there is &

csubciase (4n~kink) which can be expressed &5 linésr super-

pcesition of two cine- Gorden solitens (6]

)

(v R ) = 4tan levpl(-¥+R, ) J+utan T lexp(x+F. ) J+En {

with ZR,. a constant represerting the dicstarce betweern the
t.n e1re- CGordon solitons,2rd R. is related to A, end 2. 1in

1) by

0

A= tanhifl, N, = =4 sech fe, . (

Fr-m ~urerical ctudiee on the =small oscilletrcrm prertlc-

srry-~ crolgtien (2 1t 1 weell browen thet tecsices, & T E€ErCc T OO

R P R R R RRRRRRRRRRRERArE.



frequency (related teo trarnslaticmal inveriance) there ig an
zcditional beound stete correspending to internal cecillationrs
¢f the two cinc-Gordon seolitons around the center of nmzes
of ccivticen (2). Slightly different snalyticel exprescsicne feor
the frequercy cof such ecscilletion have been derived [(7,8].
The eim cf the precent pape} ic to present a simple deriveticn
cf the smell oscillation frequencies srcund &Gn-kink scluticons
2nd to study correcticene to thecse fregquencies due to enhermznic
efrercts. The amaelysis will be based on energetic concsideraticore
and on a mechanical enzlog of sclutien (2) as two point
sszrtycles conmected by a monlinear spring (9,103, The requency
of the cscillations ie then computed in terms of the mass eof
the particle and of the spring conztant of the 4n-kinrk
oscillator. A numerical investigation of the arharmenic
effecte of the an-kinbk oscillstions 1¢ also performed &nd
cempesred with resulte cobteined by a8 perturbatien enalysis. Ps
a recsult we find the =same analytical expression for the smell
cescillaticen frequency reperted in Ref. £7]1: while the cecrrecticrs
to thece frequencies due to anharmonicity appesr 0o be very
cmall.

The orgenmizaticn of the peper is ac follows. In secticen
17 we present the derivation of the gmall oscilletion freguency
evorecszion while 1n secticen J11 we study both rmumericelly erd
emnzlytically ithe correcticons to this frequercy cue to enherrzn:c
ceffecte.

Ve -

Firally, cection JV contesins the cumrery sngd the corcloc:

e mtar oy sntromyucang tre bomaydtoryern foroeql 1




< 00

H = ‘ftl/a(m,24mt?)*%,(a.~ccsm)+%p(ap~cos(¢/8>)de ()
J=
where &, & ere sulteble mormaslizstion conmstents.
Equation (2) is an exect soluticon cf equaticn (1) when R.
19 & constant and Ay A are given by equaetion (Z). In this
ceee the hamiltomian (4) aguires the ferm

.-
Hizl/2<¢J?4mt2)4(l—sechzﬁo)(1-c05¢)+QSechZPo(14ccs(¢/E))de (S

- e

rhere the normelization constanrts &,5 &. haeve been chocen to

—

give tero energy at ¢ = % 2n. In order to characterize emel
csci1llations around solution (2), we cbeserve that for 2
"wobbler” (i.e. an oscillating 4n-kink) the disternce between
the two eine-CGordon colitens cecilletes arpund their stat:c
teparation 2R.. 1t 1s therefore matural io sssume For such &
colutron an snalytical expression given by egustion (2) but
w1th R, reglaced by a time dependent functicn R(t) zccording

to

98

T = d(ry, R(t)) = 4tan *{ginhveech R(t)) (

Y

3

By gsubstituting (&) 1n (8) and performing the correepond:r

14

integra)l ore cbtainsg after come cemputations

t
=iR2.R ) = Bl - (ZR/cinhgR)IR? + VI(R.R) )
o
| I A T =1 W B BT S R S I
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Equetion (7)Y simply reprecsents the tota) energy of the
wzveform (&) expressed ez the cum of a lirnetic paert and &
potentiel! cne (note the analogy with particles). e &iso

~rcte thet in deriving eq. (7) the only epsreoximation nade wes

~+
T
)]

enestz (&) for the ocscilletirng 4n-kink. When 2R is

i to the static ceparatien 2R,. ef the twec subsolitcons

eau

[0
(R

equation (7) simply reduces to the rest mass energy of

csolution (2)

Moo= 140 - R/(S.C0) 3. (=)

where S, = sinh R, and C,. = coeh R..

Intr-cducing the i1nstantanecus mass

MEdy = 1601 - 2R(t)/sinh(2F(t)) ] (1)

ecvaticon (7)) squires the form

[
> -
~

H(R.R,) = 1/2 M(£)R? + V(R,R.) . (

Ty etudy small oscirllations around 2R, we let IR-R.lf“l.

Im this czce we can evpaerd the potential energy arcund R.

3

n
tn

n

CIELR, ) 2 M, o+ VU T(R-R,) 4 1/2 VT (R=-R, )2+ {

‘there srimes donote derivatives with recpect to R owhrlic the

c.te-rirt tero meanz eveluation et R = R, ).




From eq. (B) the firet derivative of V jc escily celculetec

as

V' (R.R.) = g{l(coshR/cecsh™R,)-1]{2cosh®ReinhF+sirnhFcoehR

-R(4sinh?R+2)1/(sinh"Rcesh?R) (13)

froem which cre see thet

Vv, o (16

i.e.. R. ig an extremum for the petential VIR,R,).

In Fig. 1 V(R,R.) is plotted versus R for different values
of R.+ from thch one see that R. is actuelly a minimum for
V. (Note also that the potential has & finite value at R=0).

By inserting equation (14) in (12) we gct
VIRR.) 2 V, + (1/2)V.""(R-R.) 2 (1%

2nc €tgq. (11) becomes

xI

I
~
n
=
e

“#o+ 1/2 VU P(R-RL) T+ {14&)

wFtere we have epproximated M(t) with i1ts equilibrium veiue

M.. and neglected higher order terms in R-R..

fQueticn (1&) i juct the enmergy of a hermeonic cscilleter an
t~e presence of an esrterna) constsnt potential. The frequerc,

i tren evalueted es
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whilch is ersctly the came expression as in given in Ref., [7],

J1]. Arharmenic effecte

In this csectien we study the corrections to the small
cscilletion frequency (17) due to anharmonic effects.

To this end we must take into account the fact thast the
maes ¢cf the oscillator is a function of time (sez Eq. (10)),
Ey cifferentieting Eq. (11) with respect to time and expanding
the resulting equation in powers of E = R(t) - R. up to

third order cne get

MOE + wnif + 1/2V0’77E= + 1/2150’ (E¥+2EE) + 1/2Mo’’ (E+EE)g

+ 176 VoriE= 0 (18)

introducing the trensformation T = wt and expendirg E and w

in Eq. (1B) in power of € &according to

(160

WS oW, * e, + ETW o+ L,

cre derives from (18) a eset of ecuations (after equsasting
emual powere of ¢) which cean be then solved recursively.
fter & lengthy but stendard computaticon (see for evample
Fef., 11) ore finslly gei'for the frequency trte following

LocrgTeion:




r----------------I--I----------—--r—

(L i=wi)/Cw.2e?=~1/16 V777 IV T+1/B M2 /F=121868M, 771 ) 6

+ S/UB(VL TN T T - 1BV, TV T ML M) (e

where

V.77 = =16021 + EBS.T445." 1/ ((CL¥8.7) + 16R,. (21 + 425 7+

CGE . 1/ (C..“S.%), (=15

Vot = 160144+ 28BS .7+ 1645, 4+ BS.®)/ (L5 -

16R L1144 + 2845.,2 + 34085, + 1125.%)1/7((C.=5.™) (22)

In Fig. € Egq. (20) is plotted versus R..

Jo close this section we like to compare this result with &
rumerical experiment on the asr-harmonic motien of &n
cscillating 4n-kink. To this end we have numerically
integrated the DEG equeticn with A,y A in (1) given by Eg.(Z:
fer different values cf R.. The oscillstcry motion cf =
tn-tink wes sterted by tslking @ initiel condition expreceicn
(L) with R(t=0) = R,;»R,.. The fregquency of the resulting
necilletion wes then computed by following in time the meotion
of & point on the 4n-kink profile. (This wss checked toc ke &n
eccuraste wey to measure the frequency siice no rasdiation (or
very little) waes genrnerated in the system),

Im Fige. 2 end 4 c plet of the resulting frequency
vereus {he amplitude cof the oscillation is repertes for tre
wluee of R respectively of 2 ond 5. The stargs in
ttien fycuree correspond to numerical recsults while the cclad

covve s reprecsent the theeoretical values predicied by equaticn

L R R mmmm




(27). e note that the agreement between perturbstion thecory
snd evperimenmts is quite goed for small values of R.,-~,. Freom
Fige. 3-4 it ic alee cleer thet the anhsrmonicity 1n this

vetem ctart to ke relevant enly ot large cscillaticn amglituces.

V. Conclucsien

In the present peper we havé given a simple derivetion
cf the emall cscilletion frequency &round 4n-kink soluticre
«f the deouble sine-Gorden system. The ansalysie wees bezed on
the assumption (&) for the weve form of such oscilleatirg
eclution.

F;nally, a numerically erperiment on anharmonic
oscillations cf 4n-kink solutions wes perfermed ard compared
with the predictione of a perturbaticon treatment. As 2 recult

we Tind & good agreement between the perturbative analysis

end the numericel results for emall oscillation emplitudes.
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Finure cepticne

Fig. 1 Different curves cof V(R,R,) vereus K feor different
velues of R...

Fig. 2 Oscillatory frequency given by Eq. (20) plotted
versus R,

Fig. 2 DOscillatory frequency of a &4n-"wobber" versus
(R, ~-R.) = ¢R. for the value R. = 2.

e
ip]

The etars are experimental peocints while ihe solid

curve cerrespond to theoreticel velues derived from

20
Eq. (}3’).

The same ac inm Fig. 2 but for R. = 3.
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A SIMPLE MAP DESCRIBING PHASE-LOCKING OF FLUXON
OSCILLATIONS IN LONG JOSEPHSON TUNNEL JUNCTIONS

M. Salerno®, M. R. Samuelsen®, G. Filatrella®, S. Pagano®, and R. D. Parmentier®

MIDIT Center,
The Technical University of Denmark,

DK-2800 Lyngby, Denmark.

Abstract

Application of soliton perturbation theory to a Josephson junction fluxon sub-
jected to a microwave field reduces the problem of phase-locking of the fluxon
oscillation to the study of a two-dimensional functional map. Phase-locked states

correspond to fixed paints of the map. The approach captures much of the

experimental phenomenology.

19.
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Interest in the phenomenon of phase-locking of fluxon oscillations in long Josephson
tunnel junctions has recently been stimulated by the possibility of employing arrays of such
long junctions as local oscillators in integrated superconductive microwave or millimeter-
wave receivers for radioastronomy and space communications [1]. A complete mathematical
modet of an array of fluxon oscillators would-be a system of nonlinear coupled partial dif-
ferential equations. A detailed study of such a system would, a priori, present notable
difficulties (also because the exact nature of the coupling between the individual oscillators
of such an array has not yet been well-characterized). A simpler, out related, problem s
to study the interaction of a single oscillator with a fixed, external microwave field (2].
Our theoretical approach to the study of this simpler problem is based on the per-
turbation analysis of fluxon dynamics pioneered by Mclaughlin and Scott T3]. This pertur-
bation analysis was applied to the very same problem by Chang (4], whose work clearly
suggested the power of the method. As will be shown below, our approach reduces the
problem to the study of a discrete, two-dimensional functional map, in which, for example,
a stable phase-locked fluxon oscillation corresponds to one (or more) stable fixed point(s)
in the map. Obviously this approach reduces enormously the computational effort required
to study the problem. In spite of this drastic simplification, however, the approach suc-
ceeds remarkably in capturing, at least qualitatively, much of the experimentally observed
phenomenology.
The mathematical model used to describe the dynamics of fluxon oscillations in long
Josephson junctions is a sine-Gordeon equation, modified by the addition of energy input and

dissipation terms [S5]. For an overlap-geometry junction an appropriate model equation s, in

normalized form

Pux ~ P ~ SN = LA O (1a)

with the boundary conditions

cpx(O,t) = cpx(L.t) =7 . (1b)
Oetails of the normalizations may be found in Ref. 5

Qur thecretical approach to the study of phase-locking in long junctions is based on
two fundamental hypotheses:
) The influence of an external microwave field on a long-junction oscillator is felt only

through the boundary conditicns, Eq. (1b), not through the pd.e., Eq. (1a), ie., we

assume the experimental conditions to be such that the microwave field does not pene-

trate significantly the interior of the junction.




3
i) The dynamics of fluxons in the interior of a junction is adequately described by the per-
turbation analysis of MclLaughlin and Scott (3].
Furthermore, purely for computational convenience, we make the following simplifying
assumptions:
a) The junction length L is large compared with unity so that we can employ as a solution
ansatz a form appropriate to the infinite-length limit.
b) Only dynamic states involving a single fluxon (or antifluxon) are considered.
We follow herein the procedure first reported by Mclaughlin and Scott (3] and
further elaborated by Christiansen and Olsen (6] and by Levring et al. [7]. In the infinite-

length limit, a fluxon solution of Eq. (1a) is well-characterized by its momentum P, . de-

fined as
+ Q0
Pe=-fo® o . (2)
- Q0

From Egs. (1a) and (2), the equation of motion for a single fluxon is

de
e =“an*21tY, (3)

For the pure sine-Gordon equation (x = y = Q) in the infinite-length limit, the momentum

of the single fluxon solution may be calculated explicitly as

172
P = 8u/(1- G2’ (4)

in which u is the propagation velocity.

The first essential ingredient of the perturbation analysis is to assume that if a and
vy in Eq. Ja) are sufficiently small, we may substitute P, in Eq. (3) by Pfo from Eq. (4).
In this case the fluxon position X(t) is given by

t
X = x, + ful@dr (5)

° o
where Xq is the initial position. One simple, well~known result of this procedure is that,
for given @ and v, there exists an equilibrium velocity, called u_ . for which energy input
and dissipation are exactly balanced. This velocity is found from the stationary solution of
Eq. {(3). The result is

)— 172

up = (1+ (4a/my)? (6)

€q. (3) may be intﬁrated convenientlz in terms of the guantity 7.(t)I defined as o




The result of the integration is
21 = z5 * (2 = Zp)expl-at) , (8)

in which z is the initial value of z, and 2z, corresponds to ug in Eq. (6). The fluxon tra-

jectory may then be found by combining Egs. (5), (7) and (8). The resuit is

2 72
1 z + (2% + 1)
X(t) = Xq * Ut - ;Iog[: :l

2 /2
z *t (g + 1)
172 /2
U {1 * 22yt (z2+ 1) " (zg + 1) ]
- — log (9)
« 1+ 2oz + (22 + N2 (22 + 1)V/2

The second essential ingredient of the perturbation analysis is the treatment of the
boundary condition, Eq. (b). Following Levring et al. [7], we observe that during a reflec-
tion from a boundary, due to Eq. (1b) a fluxon undergoes an energy variation AH, | given
by

AH, = £ 4mn . (10)

For constant 7n, this variation is positive at (say) the left-hand boundary and negative at
(say) the right-hand boundary. To relate this energy variation to the fluxon trajectory X(t),

we recall that the energy of a pure sine~Gordon fluxon may be calculated explicitly as

- _ 2 e -
HFO =2 8/(1-u") = Pfo/u . (1)

Thus, an energy variation given by Eq. (10) may be related to a velocity variation through

Eq. (11), whereupon the calculation of X(t) proceeds as before. An additional approximation

introduced here is that we can neglect the effects of phase-shift and dissipation during re- 1
flections (8] and that the energy variation of Eq. (10) occurs instantaneously.

We take for the term 7 in £q. (1b) the form
n-= nosin(urft + 9) . (12)

as a model of the microwave field acting upon the junction. We define the fundamentai

pericd T of a fluxon oscillation to be the time employed by the fluxon to complete cie {
back and forth round trip along the junction. Thus, the condition for phase-locking at the

fundamental frequency is, with an obvious notation

2r

We¢

Tk,k*—Z - Tk,kﬂ * Tk+1,k¢2 = (13)

In addition, we may a priori expect to observe both harmonic and subharmonic phase-lock=~ 1




T

W ¢

T
K, k+2 n
where m and n are integers.

Phase~iocking of a fluxon oscillation to an external field is manifested experimentally
by the appearance of a constant-voltage step in the current-voltage characteristic. In
terms of our model, the height in current of such a step will be determined by how much
we can vary the parameter y without breaking the locking condition of Eg. (14).

We can now proceed to caiculate the fluxon dynamics. Having specified the para-

(o))
0

t = O (setting Xg in Eqg. (9) to zero). By inverting (numerically) Eq. (3), ie., by imposing

meters «, Y, L, Ny W, and 9, we choose an arbitrary initial value, z ,of z at x = Q,

X(Ty ) = L, we calculate the time of flight, T ., from x = 0 to x = L. Inserting T4

into Eq. (8), we calculate the final value, z;” ‘D2 AT ). At this

F o 0.1
point, from the energy variation, AH, of Eq. (10), we calculate a z-variation, az'"), which,

i”, defines a new initial value, z

,of zatx = L, je., z

(0

wheri added to z of z at x = L, t = T_ . Explicitly,

o’ 0.1
we find
172
1 . (1,2 /2 k Ny 2
zo = [{((zf 2+ 1)77 (0 FOsintw b+ 91} - 1 , (15)

where, in this case, k = | and t = To,1 . We then iterate this procedure as desired for
successive spatial intervals of length L, substituting for t the sum of the preceding times
of flight. In this way, Egs. (8), (9) and (15), generalized to arbitrary k, constitute a dis-
crete functional map for the quantities Tk‘kﬂ and zék”)
spond to phase-locked states of the fluxon dynamics.

. Fixed points of this map corre-

Figs. 1 = 3 show some preliminary numerical results obtained using this approach.
Fig. 1 s'ows a portion of the current-voitage (I-V) characteristic of a junction character-
ized by @ = 0.05, L = 12, subjected to a microwave field of frequency w_ = 024, for dif-
ferent values of the field amplitude, N+ in the condition of phase-locking at the fundamen-
tal freguency, given by Eg. (13). The smooth curve (a) is the |-V characteristic in the
absence of a microwave field. This is essentially a plot of Eg. (6), inasmuch as the bias
curlbnt is proportional to v, and the voltage, in this case, is proportional to Uy - The two
discontinuous curves, (b) and (c), show, respectively, the response of the junction for o = 0.3
and n, = 0.6. Here we use the general expression for the voltage, 41:/Tk'k‘2_
Fig. 2 shows the height in current of the step of Fig. 1, measured from the center

of the step to the peak, as a function of the field amplitude, Ny - The evident linear de-




step height on the square root of microwave power normally observed experimentally [9].
Fig. 3 indicates in more detail the dynamics of the phase-locking process. In this

figure, the fluxon frequency is defined as 2r/T and the drive frequency is just

k,k+2 '

w_,. The power spectrum is calculated by representing the time sequence T

as a
rf

k,k+2
sequeﬁce of unit delta functions and by taking the Fourier transform of this sequence.
Clearly evident in Fig. 3 is the fact that as the drive frequency approaches the unlocked
fluxon frequency, mixing products (the small peaks near the edges of the figure) begin to
appear. At a certain point, the fluxon frequency is pulled into synchronism with the driver,
where it remains locked far a certain interval (the central region of the figure). Beyond
this region the fluxon frequency unlocks, and mixing products are once again seen. This
behavior should be compared with Fig. 3 of Cirillo and Lloyd [2] and Fig. 3 of Monaco et
al. {13, which depict experimental recordings of the same scenario.

Qur approach to the study of phase-locking of fluxon oscillations can clearly be
extended in several directions. The effects of phase-shift and energy loss during the re-
flections of the fluxon from the junction boundaries (81, which become progressively more
important for shorter junctions, can be incorporated into the analysis in a straightforward
manner. The procedure can also be applied to junctions of in-line geometry [5]; in fact,
for the in-line geometry the phase-locking map can be expressed explicitly, rather than
implicitly, thus permitting an analytic study of the existence and stability of fixed points.
Furthermore, the analysis can be extended, numerically if not analytically, to the general
condition for phase-locking, Eq. (14), as opposed to the condition for locking at the funda-
mental frequency, Eq. (13). These extensions are presently under study and will be re-

ported in the near future.
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Figure Captions

Fig. 1. Portion of the I-V characteristic of a junction having « = 0.05, L = 1, irradiated by
a microwave field of frequency wrf = 0.24. Smooth curve (a): no field. Vertcal
steps, curves (b) and (c): fundamental phase-locking for N = 0.3 and o = 0.6,
respectively.

Fig. 2. Dependence of the height in current of the step of Fig. 1 on field amplitude, g -
Parameters: « = 0.05, L = 12, w_ = 0.24.

Fig. 3. Dynamics of phase-locking. See text for details.
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Correlations Between Chaos in the Perturbed Sine-Gordon
Equation and Finite Modal Equations

IPNAS
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Laboratory for Applied Mathematical Physics
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ABSTRACT

This paper summarizes numerical and analytical work on a specific
bifurcation route to chaos in the damped, periodically driven sine-
Gordon equation. The emphasis here is on the modelling of this bi-
furcation sequence and the coordinatization of the chaotic attract-
ors by truncated modal equations. The underlying structure which
we establish and focus upon in both the p.d.e and truncated o.d.e.
systems is the existence of homoclinic orbits in an integrable,
unperturbed phase space. Thus, under weak perturbations, there ex-
ists a natural mechanism for generating chaotic dynamics. We pro-
ceed to numerically test whether these homoclinic structures are
observed in the chaotic dynamics. The upshot is a four-dimensional
truncated system of modal equations which correlates remarkably
well with the chaotic dynamics of the full p.d.e. This paper is a
condensed version of [8], based on joint work with A.R. Bishop,

R. Flesch, D.W. McLaughlin, and E.A. Overman.

Outline:

1, Bifurcations to Chaos in the Weakly Perturbed Sine-Gordon Equation.
2. A Truncated Finite Mode Ansatz in the Nonlinear Schrddinger Limit.

3. Properties of the Unperturbed Modal Equations.

4. Bifurcations‘to Chaos in the Perturbed Modal Equations.

S. Correlations Between the Infinite-Dimensional and Reduced Systems.

1. BIFURCATIONS TO CHAQS IN THE WEAKLY PERTURBED SINE-GORDON EQUATION

We begin with one finely tuned numerical experiment on the weakly

damped, periodically forced, sine-Gordon equation,




U, -4 +sinu= €[~ au, + I cos{wt)] ., (1)

with even spatial symmetry, and periodic boundary conditions of length
L = 12. The linear damping coefficient is fixed, e«a = .04, the initial
condition is always chosen as a singlehump sine-Gordon breather local-
ized within the period, and the driving frequency is fixed at w = .87.
Thus, we focus on the large time {(t >> 1) attractors of this system as
a function of the single bifurcation parameter, I, which is the ampli-

tude of the external driver. (Refer to (1, 2] for more extensive numeri-

cal studies.)
In this controlled experiment, we observe the following bifurca-
tion sequence in these long-time "attractors", which are specified here

by their spatial structure and temporal behavior.

'r : >
.0 058 07 103,150

spatial
,@“ Ko=DKo 0K € Ko 0 OK | X 5 9K | O ,

structure

temporal '
pehavior k——frequency locked to w——*——chaotlc—-)

p.d.e. bifurcation diagram.

FIGURE 1.

Here x, denotes a spatially flat, zero wavenumber component, x, de-
notes a period L component of wavenumber k, = 2m/L, kgex, denotes the
nonlinear superposition of these two modes, etc. The time flow is peri-
odic with the same trequencf‘m of the driver, and then chaotic, which

implies a broadbanded frequency spectrum. (We often observe quasiperi-




odicity in t before chaos {1, 2], but not in this specific parameter re-
gime. Apparently, the quasiperiodic states exist in this diagram, but
are either unstable or these initial conditions are not in the basin of
attraction of stable quasiperiodic states. As we see below, our modal
equations suggest the former alternative.)

The chaos here is intermittent chaos. The next figure is for ¢«[ =
.103, displaying the 3-D plot of the numerically integrated solution to
Eq. (1). At each time step, there is spatial coherence: either a breather
in the center of the interval superimposed on a flat background, a
breather localized at the ends of the interval on top of the x, compo-
nent, or the intermediate flat x, state. The "laminar" regions are where
the system chooses one configuration, say the breather in the middle.
The "chaotic bursts" are associated to the passage out of the laminar
state (presumably due to the buildup of a weak instability), through the
intermediate x, configuration, and then into either of the two breather
states. This chaotic attractor consists of the set of spatial states ob-
served in Figure 2, and the chaos is this intermittent jumping between
the breathers localized in the center or the wings, through an interme-
diate spatially flat configuration.

Next we quantify this spatial mode measurement (x,, x,®x,, etc.)
by taking ue(x,tn) at each time step tn from the integration of Eq. (1),

and using a sine-Gordon spectral code to measure the exact nonlinear

sine-Gordon mode content in the field ue(x, tn). These are given in Fig-

ure 3, from the same time series as Figure 2.




Numerically computed solution ¢ = u‘(x,t) of Eq. (1).
el = ,103, 50,000 s t § 60,000.

FIGURE 2.
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Sine-Gordon spectral sequence depicting a flutter between the
"gap" and "cross" xk,ex, spectral states, all tightly bunched
around the double point, limiting state in the upper right
frame. The waveform ¢ need not be flat in this apparent «,
spectral configuration: in fact, this «, component is pre-
cisely the homoclinic component associated to the complex
double point. Notice from Figure 2 during this time sequence
the corresponding p.d.e. waveform flutters between the
breather states localized in the center or ends of the inter-

val.

FIGURE 3b.
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"gap" x,®x, state, then flutters back and forth, finally
settling back into the "cross" configuration from 50,388

until 50,420.

FIGURE 3c.

The predominant nonlinear modes are (Figure 4):
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The three dominant spectral configqurations corresponding
to the three dominant spatial states observed in Figure 2.

FIGURE 4.

Here we have truncated to the two pure «x,ex, states (4a, 4c), and the
intermediate configuration (4b), and the dynamics is viewed as a flow
through the spatial states associated to these spectral configurations.
(We surmise the other small amplitude modes are "slaved" to this dynamics).
The upshot of all these preliminaries is that the low~dimensional

configurations in Figure 4 are rich enough to produce chaos under per-
turbations. Specifically, in {3, 4, 5] we establish the following facts

about the ungerturbed, integrable sine-Gordon equation with periodic

boundary conditions.

L Fact 1 The exact k,®x,, breather plus nonzero mean, solutions of sine-
Gordon, with spectrum as indicated in Figures 4a,c, are linear-

ly, neutrally stable.

Fact 2 The intermediate «x, state, corresponding to a purely oscillatory
pendulum solution, with spectrum as in Figqure 4b, is linearly
exponentially unstable, with order 1 growth rate. There is pre-
cisely one unstable mode, the k, mode, labelled by the complex
"double point" (the shaded square) in Figure 4b. This local lin-
earized instability is related to a global homoclinic orbit in

the sine-Gordon periodic phase space. In other words, there is

an exact sine-Gordon solutior. which asymptotically relaxes to

this flat pendulum state as |t| =+ =, but which is a x, mode in

%. (See [S] for exact formulas.)

Thus, our thesis is: (i) these low-dimensional homoclinic struc-

tures provide a mechanism for chaos, (ii) the spectral measurement of




the perturbed flow in the chaotic regime indicates an irregular passage

through these homoclinic configurations, and (iii) thus, we may be able

to coordinatize the chaotic attractors with a low-dimensional truncation.

Our first attempt at this program is the remainder of this paper.

2. A TRUNCATED FINITE MODE ANSATZ IN THE NONLINEAR SCHRUDINGER LIMIT

At frequencies w near but less than one, the sine-Gordon flow (Eq.
(1)) resonates with breather-like modes. Thus, one is naturally led to the
derivation of a nonlinear Schrddinger envelope equation, with the bene-
fit that we explicitly factor out the driver frequency w, while at the
same time retaining integrability at the unperturbed level.

Let w = .87 = 1 - ¢w. Seek a solution u‘ of Eq. (1) in the form
(with X = V2ew x, T = €it)

u® = /G [B(X,T) ™" + complex conjugate] + O(ed) . (2)
Then one easily finds the envelope B(X,T) satisfies:
-iBy *+ Byy * (|B]2-1)B = i(aB+l) , (3a)

where the new scaled parameters are

—— 2
G=.155, L. =12/2¢5 ., K2 = (2—“) = 1.05 , (3b)
. g

-

and the scaled bifurcation parameter [ is

f =2.66 T . (3c)

By factoring out the driver frequency, we reduce to a simpler per-
turbation (fixed damping, constant driver) of the integrable nonlinear
Schrddinger equation (Egq. (3a) with a = [ = 0). Thus, steady solutions
of Eq. (3) correspond to locked periocdic solutions u® of Eq. (1), T-peri-

odic solutions of Eq. (3) correspond to quasiperiodic behavior of per-
turbed sine-Gordon, and chaos is chaocs.

The truncation on fully nonlinear modes of Egs. (1) or (3) is under
development {6], and codes are being constructed to handle the inherent

complexities ([7], such as Riemann surface periods, associated theta




functions, and appropriate derivatives and averages of these functions).
In the meantime, we follow the numerical indications of the full p.d.e.
and attempt to capture the qualitative dynamical features of Eg. (1)
with a truncation on the Fourier k, and x; modes. We seek

™

B(X,T) = c(T) + b(T) cos(kX) , k = %— (4)

>

insert this ansatz into the perturbed NLS equation, Eq. (3), and find
the following complex amplitude equations:
-icy + (|e|?+3|b|2-1)c + §(cb™+c™b)b = idc + if
(5)
iby + (Jc]?+3|b|2-(1+k?))b + (cb*+c*b)c = iab ,

a 3 .155 .

Before detailing the predictions of this two-mode truncation, we
remark on one salient feature of these equations, and the reflected
structure in the perturbed sine-Gordon solution u corresponding to this

approximation:
0 ~ /%8 [(c(T) + B(T) cos (kX))el®t + c.c.] + o(ed) . (6)

The perturbed o.d.e.'s (Eg. (5)) admit the symmetry (¢, b) * (¢, -b},

which corresponds for ue to a translation in x by L/2. Thus, for each

fixed point (¢, b) of the modal equations, corresponding to a small am-
plitude breather plus nonzero mean, there also exists another fixed
point (c, -b), reflecting the half-period translate of the breather. If
we recall Figure 2 and the surrounding discussion, the chaotic p.d.e.
dynamics is qualitatively a competition between two such states. Also,
this symmetry implies b = Q0 is an invariant subspace, and for u® this is
the x, intermediate state.

Another important feature of this approximation (Eg. (6)) regards
Figure 4. Namely, by varying c(T), b(T) we are able to produce all three
spectral configurations: the’gap spectrum with x,ex,, the cross spectrum
with x,ex,, and the x, homoclinic configuration. The flow through these

configurations will appear in the last section.




So far, the individual qualitative features of the perturbed sine-
Gordon dynamics (Figure 2) exist in this truncated NLS approximation,
and now we focus on the associated dynamics and deeper parallels between

the full and reduced systems.

3. PROPERTIES OF THE UNPERTURBED MODAL EQUATIONS

Consistent with our interpretation of the perturbed flow (Eq. (1))
in terms of the integrable sine-Gordon phase space, we develop the un-
perturbed modal structure relevant for this paper. (See [8] for details.)
The unperturbed (& = 0, T = 0) modal equations are:

-icy + ([e|?+4{b]2-1)c + H(cb™+c™b)b = 0 ,

(7)

-iby + (|c|?+#[b}?-(1+k?))b + (cb*+c*b)c = O .

Property 1 The system (Eq. (7)) is an integrable, Hamiltonian system,
with two real independent integrals,

I

lc]? + 4[p|?
(8)

x
1}

tel*+|b|*lc|?+ % |b]*-(1+k*)|b|*-|c]?+ H(bic*P+b*icT)

Property 2 Symmetry considerations produce three rings of fixed points:

(e1®,0) ., ecf0,21) ,

(o, el /§(1+k2)) , ¢efo0,27) , (9)

i¢ /1+2k? i¢., /2-k?
(e [== . e %2 /5%-] . de0,2m)

Property 3 Fixed point Ring 1 has a one-dimensional stable and unstable

Ring 1 (c,b)

Ring 2 (c¢,b)

Ring 3 (c,b)

eigenspace, with eigenvalues tkv2-k?, and two zero eigen-
values. Fixed point Rings 2, 3 have a four-dimensional cen-

ter manifold.




Property 4 In Ring 1, H = -4, I =1, there are heteroclinic orbits on

this energy surface which approach Ring 1 as |T| > o,

Thus, as in the unperturbed p.d.e., the k, solutions (b = 0)

are exponentially unstable, with order 1 growth rate, and
have homoclinic orbits on their enerqgy surfaces.

4. BIFURCATIONS OF THE PERTURBED MODAL EQUATIONS

The behavior of the unperturbed properties under the perturbation
(Eq. (5)), with @ = .155, as I varies, is the crux of this paper. By
simple perturbation arguments, the perturbation "phase locks" to dis-
crete points on the Rings 1, 2, 3, for exampla. We will not discuss
these aspects, but rather produce the numerically generated global bi-
furcation curves (due to M. Jolly and Y. Kevrekides), along with the

stability of each branch (due to J.M. Hyman).

L-2 norm of the solution
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Property 1 The curve OABFG consists of pure x, states (b = 0). The up-
per _x, branch FG is the phase-locked continuation of Ring 1,

which maintains the one-dimensional unstable manifold, and
thus is the perturbed o.d.e. signature of the homoclinic

p.d.e. structures in Fiqures 2 and 3.

Property 2 The curve BCDE is a double curve of ky®x, fixed points, (c,b)
and (c,-b), b # 0. The double x,9x; branch CD is the stable

phase-locked continuation of Ring 3, consisting of stable
breather plus mean states, related by half-period translation.

Property 3 The lower hysteresis curves CB and FB pick up an additional

unstable eigenvalue due to the perturbation.

Property 4 The key feature in this diagram is point D on the xjex,
branch, at T = .268, which corresponds to a subcritical Hopf
bifurcation. The previously stable x,®x; fixed points become
two-dimensionally weakly unstable owing to the perturbation.
For T > .268, the system (Eq. (5)) develops chaotic dynamics,

as '1e describe below.

(We note this model predicts that when there is a second frequency gen-
erated in u' by Hopf bifurcation, it is unstable, explaining why quasi-
periodicity was not observed in the p.d.e. bifurcation diagram of Fig-

ure 1.)

Property 5 The following global fixed point connections are observed

just before Hopf bifurcation (Figure 6).

Property 6 After the Hopf bifurcation, [ 2 .268, the previcusly stable
x§'1 fixed points become two-dimensionally, weakly unstable.
This coincides with the onset of intermittent chaos in the
dynamics of the o.d.e's, as depicted below in Figure 7 for
[ = .275, which corresponds to the p.d.e., Figures 2 and 3,
with ¢ = .103.
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Property 7

Property 8

The chaotic o.d.e. "attractor" contains the two weakly un-

stable breather plus mean states, related by a half-period
translation, and then the intermittent chaotic bursts in and
out of these metastable states. In order to correlate with
the p.d.e. scenario, Figures 2 and 3, the intermediate states
must include a passage near the x, homoclinic structure. We

measure this next.

During the flow in the chaotic attractor, we measure passage
near the homoclinic structure in two ways. First, we graph

h = H - ((I%?/2)~1), which is zero on the homoclinic Ring 1,
and check for zero crossings of h during the intermittent
bursts (Figure 8). Also, we compute distances to each fixed
point in Figure 6 during the flow, and determine which fixed

points are being visited at each phase in the dynamics (Fig-

ure 9).
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The upshot of this analysis is that h does have zero crossings in
the intermittent chaotic bursts, whereas h oscillates near the nonzero
value corresponding to the x,ex, fixed points during the laminar phases.
Moreover, in these bursts out of laminar regions, the phase-locked fixed
point k,'% from the homoclinic ring is approached, sometimes getting very
close to it, whereas the flow never comes within unit distance of the
other four fixed points.

Thus, the chaotic o.d.e. scenario truly reflects the qualitative
p.d.e. scenario quite well. We close with one final test of this inter-

pretation.

5. CORRELATIONS BETWEEN THE INFINITE-DIMENSIONAL AND REDUCED SYSTEMS

So far, we have measured homoclinic crossing in two distinct ways:

in the perturbed p.d.e. by graphing the exact sine-Gordon spectrum of u®

at each time step, and in the o.d.e. by graphing h = H - ($I?-I) and

checking for zero crossings. As a final test of this homoclinic phenom-
enon, we combine the two measurements. We take c(Tn), b(Tn) during the
flow that generates h, reconstruct the perturbed sine-Gordon solution u'
by the approximation (Eq. (6)), and then compute the sine-Gordon spec-

tral measurement of ut. When h goes through a zero crossing, does the

perturbed sine-Gordeon field u¢ pass through a homoclinic spectral con-

figuration? The results appear in Figure 10.
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The correlation is surprisingly good, with errors arising only
very near to the homoclinic state. This is to be expected owing to the
linear vs. nonlinear truncation. (We expect more precision when we model
the nonlinear mode truncation.)

The mathematical analysis to support the arguments developed in

this papet‘and [8] will be presented elsewhere [6, 9, 10].
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